Start of main content

Hydrogen could replace natural gas to heat homes and slash carbon emissions, new report claims

Natural gas is now one of the largest sources of carbon emissions. 85 per cent of homes in the UK use gas for heating and cooking and more than 50 per cent of energy consumed by industry, alongside 40 per cent of electricity, is also generated from gas. The key feature of hydrogen is that when combusted it produces no carbon emissions and is, therefore, a low carbon alternative to natural gas.

Detailed in a new, Institution of Engineering and Technology (IET) led report, experts from five professional engineering institutions were tasked by government to assess the engineering risks and uncertainties around using hydrogen in homes, businesses and industry as a future low carbon fuel.

Lead author, Dr Robert Sansom of the IET’s energy policy panel, said: “We are now in a position to seriously consider the viability of using hydrogen in the UK’s gas grid for use by homes and businesses which could significantly contribute to the decarbonisation of the UK’s energy sector.

“Hydrogen has not been deployed at scale anywhere in the world and so any proposal will need to compensate for this lack of experience. Our report identifies key risks and uncertainties such as ensuring that we understand the impact on the public from a transition to hydrogen and can minimise any disruption that arises. We know hydrogen produces no carbon emissions when burned but it is also important to fully investigate and understand the overall environmental impact a switch to hydrogen is likely to make.

“It’s fundamental that these areas, as well as others identified in the report, are comprehensively addressed before a programme of large-scale deployment is considered.”

The benefits of hydrogen include its ability to be produced in large volumes from natural gas using a process called gas reforming. A by-product of this process is carbon dioxide and this must be used or safely stored – a process called carbon capture utilisation and storage (CCuS).  Hydrogen can also be produced using electrolysis but at present, this is less suited for producing large volumes of hydrogen and costs are currently higher.

In addition, most of the UK’s iron mains gas networks will have been replaced with hydrogen-safe polyethylene pipes by 2030.  Existing gas boilers in homes will need to be replaced but boilers have a working life of 10 to 15 years and so these could be phased in with “hydrogen-ready” boilers at little additional cost to consumers. 

The report identifies five key recommendations which need to be investigated but also acknowledges that good progress is already being made.

The UK must:

  • commit to a CCuS infrastructure which is essential to the bulk production of hydrogen
  • trial new technologies to ensure robust cost and performance data
  • prepare a detailed transition programme so that problems can be identified, and solutions found
  • identify and mobilise the skills and resources required
  • provide a stable and assured funding regime.

Dr Sansom concluded: “It is ambitious. To make a significant contribution to meeting the UK’s 2050 carbon reduction target the transition to hydrogen would need to be implemented over the next 30 years. This may seem a long time but in terms of the infrastructure required and millions of homes and businesses affected it is relatively short. Action is required now and we hope that our findings and subsequent recommendations can make a significant contribution to advancing the decarbonisation of the UK.”

‘Transitioning to hydrogen – Assessing engineering risks and uncertainties’ can be found here.

It has been produced by a professional engineering working group consisting of: The Institution of Engineering and Technology (IET), the Institution of Chemical Engineers (IChemE), the Institution of Mechanical Engineers (IMechE), the Health and Safety Laboratory (HSL) and the Institution of Gas Engineers and Managers (IGEM).



Notes to Editors

The focus of the report has been on technical engineering aspects, the professional engineering group has not passed judgement on whether hydrogen is desirable in terms of the economy, society or the environment.

The report highlights 20 ongoing projects looking at various aspects of hydrogen production and use. Detailed case studies of these projects and their contributions to various issues can be found in the report.

About the IET

  • We inspire, inform and influence the global engineering community to engineer a better world.
  • We are a diverse home for engineering and technology intelligence throughout the world. This breadth and depth means we are uniquely placed to help the sector progress society.
  • We want to build the profile of engineering and technology to change outdated perceptions and tackle the skills gap. This includes encouraging more women to become engineers and growing the number of engineering apprentices.
  • Interview opportunities are available with our spokespeople from a range of engineering and technology disciplines including cyber-security, energy, engineering skills, innovation, manufacturing, technology, transport and diversity in engineering.
  • For more information, visit
  • Follow the IET on Twitter.


Media enquiries to:

Hannah Kellett
External Communications Manager
T: +44 (0)7738602426