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1. INTRODUCTION – WHERE ARE WE NOW?

From humble beginnings in the 1880’s the electric power 
industry has grown into one of the largest industries. It has 
done an excellent job of meeting the energy needs of the 
20th century and electricity has become a basic necessity 
in modern society. It has also been recognised that the 
electric power industry  has an adverse impact on natural 
environment and that there is a need to refocus business 
in order to meet energy needs of society in a way that 
is “sustainable” in the long run. The Industry has been 
undergoing major restructuring over last twenty, twenty 
five years including shift from monopolistic to competitive 
structure, following new economic/social/environmental 
requirements and accommodating new sources/types of 
electricity generators.

In spite of all these changes the major characteristics 
of the power systems remain to be: Large, conventional 
power plants dominate; Monopolistic vertically integrated 
structure (mostly); Limited (<10%) cross-border power 
transfers; Limited application of FACTS devices and power 
electronics (PE) in general; Limited use and integration 
of ICT (Information and Communication Technology); 
Preventive control design/actions; Deterministic system 
studies; Unidirectional power flow; Passive distribution 
networks; Small or no involvement of customers in network 
operation and control; Limited exchange of data between 
neighbouring utilities.

There has been a substantial amount of work over the  
last few years in the general area of modelling and 
dynamics studies of future power networks. The overview 
below focuses on work published over the last five years 
and predominantly in the UK and Europe.

• �Transient stability assessment and control islanding 
scheme  
	 �Based on IEEE test network [1]-[4]

 �Method that can be used for preventive 
islanding purposes [5]

 �Controlled islanding [6], [7]

 �Online Dynamic Security Assessment using 
Decision Trees [8, 9]

• �Data driven method for electromechanical oscillations and 
voltage stability

 ��Iceland power system (Oscillation source location 
using logic regression, wavelets) [10-13]

 �Nordic System (Finland/Sweden/Norway/Eastern 
Denmark) [14, 15]

 �Mexican System [16]

 ��Ecuadorian Power system (real data) and Northeast 
Power Co-ordinating Council (NPCC) network 
(Oscillating modes identification using classification 
trees) [17]

 �Wind farm oscillations detection using wavelet-based 
support vector data description [18]

 �Modal Identication of Transient and Ambient Data 
Oscillations by IEEE Task force [19]

 �Adaptive voltage stability protection [20]

• Estimation using real-time dynamic data

 �State Estimation (IEEE test network) [21] [22]

 �Synchronous machine parameter estimation [23]

 �Inertia estimation using WAMS [24]-[26] 

 ��Inertia estimation using WAMS in GB network [27]

 �Wind plant Inertia estimation [28]

 �Frequency and power [29]
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• GB power systems/Analytical tools 

 �GB Electricity Transmission Network [30, 31]

 �GB Wide Area Measurement System [27, 31-34]

 �UK network Modelling [35, 36] PSSE [37] DigSilent [38-40] 
PSCAD [41, 42]

 �UK network modelling Wind [43] [44] Generation 
capacity [45] Corrective control method (DigSilent) [46]

 �GB frequency response from EV [47]

 �Operating strategies for gas and electricity 
considering wind in GB system model [48]

 �Framework for modelling uncertainty in the input 
data for risk calculations and application in GB 
system [49]

 ��Impact of wind and HVDC on GB system [50]

 �Control thermostatic loads to provide inertia 
in GB Gone Green 2020 scenario [51]

 �Transient Assistive Measures using HVDC on 
GB system (DIgSILENT) [52]

 �Offshore wind turbine contribution to frequency 
stability in real frequency excursions of GB network [53]

 �Transients measurements in GB network 
(co-author and funding by National Grid) [54]

 ��General overview of offshore wind power integration 
in UK and Europe [55]

 �Frequency stability using dynamic model for 
aggregated refrigerators in GB [56]

• Modelling of distributed generation for stability study 

 �Wind Generation [57]-[62] Danish System (DIgSILENT) 
[62]

 �Wind generator models for stability studies [63], [63]-

[66]

 �Extended Equal Area criterion to assess the impact 
of offshore Wind Power through HVDC on transient 
stability [67]

 ��HVDC model based on PMU measurements for 
voltage stability on IEEE 39 bus system [68]

 �Limit Induced Bifurcation using Dynamic wind farm 
model [69]

 �Reduced order dynamic models of Active 	
Distribution Networks [70]-[73]

 �Battery Energy Storage System dynamic model and 
control [74], [75]

 �DG clustering [76], 

 �DG Modelling Overview [77], 

 �Wind Generation clustering [78]

 �Impact of PV on stability [79]-[81]

 �Isolated system with increased wind and hydro 
(modelling in PSS/E) [82]

 �Representation of external grid for DG stability studies 
[83]

 �Integration of EVs [84] (Portuguese network), [85]-[86] 
(Danish Power system)

• WAMS and PMU monitoring data

 �GB [27, 31-34]

 �Mexican System and Finland System [87] 

 �Transient faults simulated by DigSilent [88]

 �Voltage Stability 

• �Modelling and simulation for system dynamics [89]-[92]

 ��Oscillation damping [93] (VSC-HVDC Model Predictive 
Control), [94], [95] (Wind Power plants)

• National Grid Reports

 �2013 electricity ten year statement [96]

 �UK Future Energy Scenarios [97]

 �Wind Energy in the UK [98]

• Projects and involved organisations in the UK

 �Aims at increasing Sub-synchronous oscillation 
visibility in the UK network. [99] https://www.
ofgem.gov.uk/ofgem-publications/84811/
nicsubmissionforsptransmission-visor.pdf

 �Focus on the Distribution system operation. In 
WS3 the Transform Model was developed to assess 
the costs and benefits of smart developments 
of the GB distribution system. [100] https://www.
gov.uk/government/uploads/system/uploads/
attachment_data/file/285417/Smart_Grid_Vision_
and_RoutemapFINAL.pdf

 �“Request for Information”, Energy Networks 
Association. Part of SGF WS7 in association with 
ENA. Working on technical details on the report 
“2030 Distribution System” which is also included in 
the following draft.
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	�Development of models and scenarios based on the 
transform model. http://www.smarternetworks.org/
Files/Announcement_of_Opportunity_-_Exploring_
the_Operation_of_the_GB_Distribution_Network_
in_2030_131125122541.pdf

 ��Equivalent models for the GB system for future 
studies. [101] http://www.theccc.org.uk/wp-
content/uploads/2013/12/CCC-Infrastructure_TD-
Report_22-04-2014.pdf

 �Working in collaboration with Smart Grid Forum. [102] 
http://www.theiet.org/factfiles/energy/pnjv-page.cfm. 

 �“GSR016 Application of scaling factors and inclusion 
of embedded wind in SQSS Chapter 4 studies” and 
“GSR010 Review of Onshore Entry Criteria”, National 
Grid. Workgroups working on modifications for DG unit 
representation requirements.

In spite of noticeable activity in modelling future network 
scenarios the software tools used are to a large extent 
conventional (PSCC, DIgSILENT/PowerFactory, EMTDC, 
IPASA, etc.) and the models used largely limited by software 
environment. The studies carried out are almost exclusively 
deterministic with very little attention paid to modelling 
uncertainties and the test systems used are generic test 
networks or simplified real network models. 

2. WHERE ARE WE GOING TO BE? 

It is widely anticipated though that there will be enough public 
support and sustained political will to build enough renewable 
generation capacity to produce 50%, or more, of the demand 
for electrical energy. Many of renewable energy sources (RES) 
have a low energy density and are therefore distributed. The 
majority of RES will be connected to the network through power 
electronics interface. Some of them are intermittent (driven 
by astronomical factors) and other stochastic (dependent on 
meteorological conditions). The exploitation of low intensity 
renewable resources requires large investments that are 
economically viable only if the utilization of the primary energy 
is maximized. Intermittent RES thus provides little control and 
causes much uncertainty in the operation. Because of the 
intermittency the renewable generation capacity will have to 
represent a significantly larger fraction of the total installed 
capacity.

Currently major type (by volume and installed capacity) of 
renewable generation, large off-shore wind farms, will be most 
likely, connected to an off-shore sub-marine transmission grid 
first and then to the shore.
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Grid connections and off-shore networks could be either 
AC or HVDC cables. It is envisaged that power electronics 
will play an increasing role in the grid to facilitate the bulk 
(cross-border) transfer of power and required network 
flexibility. This proliferation will be spearheaded principally 
by HVDC links to assist in stability and power flow control, 
generator-grid interfaces and increased application of 
FACTS devices to “soften” existing transmission networks. 
Because their cost is not likely to decrease significantly 
FACTS devices will probably remain somewhat auxiliary to 
the main AC transmission and distribution networks in the 
immediate future. The HVDC, in particular Variable Source 
Converter (VSC) controlled HVDC, lines on the other 
hand, are largely expected to form meshed supergrid on top 
and in conjunction with, existing AC grid to shift large amount 
of electrical power over large distances.

Depending on the country and required energy mix to 
ensure energy security, nuclear plants may represent a 
significant fraction of the remaining generation capacity. 
Thermal generating plants burning fossil fuels will continue 
to provide the balance of the capacity. These plants 
though may most probably operate under an effective 
and efficient “cap and trade” mechanism for emissions 
trading. This will ensure that their operating costs are 
higher than the cost of producing energy using generation 
that does not produce green house gases.

In summary the future power systems will be 
characterised by:

• �Much more liberalised market

• �Increased cross-border bulk power transfers to facilitate 
effectiveness of market mechanisms

• �Increased use of HVDC lines of both, LCC and, 
predominantly, VSC  technology (in meshed networks 
and as a super grid)

• ��Increased presence of static and active shunt and series 
compensation in AC grids

• �Increased deployment of FACTS devices in general

• �Large on-shore and off-shore wind farms 

• �Proliferation of non-conventional renewable generation – 
largely stochastic and intermittent (wind, PV, marine) at 
all levels and of various sizes

• ��Small scale (widely dispersed) technologies in 
distribution networks

• �Active distribution networks with bi-directional energy 
and information flow

• ��New types of loads within customer premises (PE, LED) 

• �Electric vehicles (increasing spatial and temporal 
uncertainty of the load/generation in the network)

• ��Integrated “intelligent” PE devices, both at customer 
and utility premises

• ��Integrated ICT & storage technologies of different size 
and at different voltage levels

• �Different energy carriers

This new generation and load technology mix may not be 
able to keep the system in balance if it is operated in the 
traditional way, i.e. the generation is ramped up and down 
to follow the load and re-dispatched to resolve transmission 
constraints. Replacing the current “supply-follows-load” 
control philosophy by a “load-follows-supply” approach 
might be considerably cheaper as the heat, cold, energy 
or material storage that is naturally incorporated in many 
domestic and industrial appliances and processes can 
be harnessed to adjust the demand to match the supply. 
Furthermore, electric and plug-in hybrid vehicles (whose 
number is growing, although slower than expected) and 
distributed energy storage, could provide an additional 
and particularly flexible control resource, though, at the 
same time may place additional demands on power 
networks requiring higher network flexibility and operability. 

The key characteristics of this future power system will 
be an unprecedented mix of a wide range of electricity 
generating technologies, responsive and highly flexible 
demand/storage with significant temporal and spatial 
uncertainty, proliferation of power electronics at 
transmission (HVDC and to certain extent FACTS 
devices) and distribution (PE interfaced generation and 
storage technologies, end use customer devices – new 
types of loads, EV) system level, flexible hierarchical 
control structure and blurred boundaries between 
transmission and distribution systems (with distribution 
system becoming more “transmission like”) and 
significantly higher reliance on the use of global (Wide 
Area Monitoring) signals for system identification and 
control and Information and Communication Technology 
embedded within the power system network and its 
components, to facilitate two-way-communication.
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At distribution network level, a distribution network (not 
necessarily electricity, could be energy) cell of variable 
size (from micro grid to larger part of higher voltage 
level network) manages, controls and protects itself to 
ensure adequate security, reliability and quality (possibly 
differential, different customers receiving different 
contracted quality and reliability of supply) of electricity/
energy supply. Cells may exchange power/energy based 
on real time energy trading using appropriate interfaces 
(PE or other). Energy trading is based on local energy flow 
exchange between cells linked by a global ICT network. 
The network accepts plug & play cells (“modular self 
configuring design”) some of which may not be internally 
using AC power. Individual customers will have substantial 
if not full flexibility to participate, if they wish so, in energy 
exchange/trading or they might be encouraged to do so 
through appropriate pricing signals.

All the above features of transmission like and distribution 
like network (allowing for greater level of “merger” between 
the two) will have to be fully integrated to ensure that the 
system as a whole works, and provides support during 
emergencies to individual cells or groups of distribution/
distributed cells and ultimately to the power system as 
a whole.

3. MODELLING AND SIMULATION CHALLENGES 

Key modelling and simulation challenges in order to 
efficiently and effectively simulate possible operational 
scenarios of future power networks include (not given in 
order of priority): 

• �Modelling for steady state & dynamic (small disturbance 
and transient) studies 

 �Large interconnected networks with mixed generation, 
FACTS and short/long distance bulk power transfers 
using HVDC cables and series compensated AC lines 
operating in parallel.

 ��Clear identification of advantages and disadvantages of 
different levels of detail in modelling of HVDC (different 
technologies including multi terminal HVDC) and 
FACTS and recommendation of models to be used in 
different levels of studies. 

Comment: While development of these models have 
already been a subject of many industrial and academic 
studies, clear recommendation is still missing regarding 
the level of detail of different models that is absolutely 
necessary for different types of studies. This is to a certain 

extent hampered by the fact that these highly sophisticated 
technologies are developed by companies who naturally 
want to protect their IP rights and the sharing of data 
and information is highly restricted. Classical power 
system studies (typically performed by electrical power 
engineers) tend to use simpler models of HVDC and 
FACTS technology while studies coming from the power 
electronics area (typically performed by power electronics 
engineers) focus on very detail modelling of internal circuits 
of these devices. A “look up table” approach would be 
a suitable immediate way forward where different types 
of models could be recommended for different types of 
power system studies, as well as different size of simulated 
networks. Analysis to what extent (type of “sensitivity 
analysis”) the use of “one level more detailed” (higher 
order) model and “one level less detailed” (lower order) 
model then the recommended, would affect the results of 
simulations. It is essential that both small (a few buses) and 
large system (hundreds of buses) studies are carried out in 
parallel to facilitate physical understanding of interactions 
between the two systems and justify proposed choice 
of models and to illustrate practicality of large system 
implementation and eventual interactions between different 
subsystems. These recommended models should be in 
appropriate form so that they could be easily incorporated 
in commercially available packages.

• �Clusters of RES and storage technologies either of 
the same or different type considering associated 
uncertainties. The uncertainties considered should 
include both temporal and spatial uncertainties. The 
latter are particularly important as hundreds, if not 
hundreds of thousands of different devices may need to 
be represented.

Comment: Similar comments as above regarding the 
recommendations of look up table of suitable models of 
different technologies for different types of studies as well 
as applicability to large and small systems. Additionally, the 
aspects of temporal and spatial uncertainties should be 
addressed in close collaboration with system operators to 
restrict the search space when considering uncertainties 
to feasible regions only. While an attempt should be made 
to specify best/worst case scenarios when modelling these 
uncertainties, i.e., to define the bounds of uncertainty, this 
would not be sufficient to gain a realistic picture about the 
influence of uncertainties involved as it could lead to either 
too optimistic or too pessimistic results. 
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An in-between solution between best/worst scenario 
studies and full blown uncertainty study with reasonably 
flexible bounds of uncertainty could be to propose bounds 
and the most likely/probable scenario(s) and propose 
relevant models for these few cases. These models would 
need to be developed and incorporated in commercially 
available packages.

• �Modelling of whole LV and MV distribution network cell 
(DNC) with thousands of stochastic and intermittent 
RES which may exhibit temporal and spatial uncertainty.

• �Modelling of demand, including new types of energy 
efficient and PE controlled loads, customer participation 
and behavioural patterns, EV, etc. Demand modelling 
as a generic term used here includes forecasting of 
demand response to network disturbances (not only 
forecasting of P and Q consumption), i.e., dynamic 
response of demand to both voltage and frequency 
disturbances.

Comment: The major modelling challenge above is not 
modelling of individual devices but rather appropriate 
aggregation of a very large number of individual devices 
considering all associated uncertainties for large system 
studies. This aggregation should result in equivalent 
models with recommended parameter values of specified 
accuracy, i.e., uncertainties in parameter values should 
be bounded. The probabilistic models and parameters 
may be one option as it has been shown in some studies 
in the past that very good results could be achieved [78]. 
As an intermediate step towards full blown probabilistic 
studies a few characteristic points/scenarios could be 
considered, e.g., best/worst case scenarios and the most 
likely/probable scenario(s) to get the initial assessment of 
the significance of considering parameter uncertainties. 
These models would need to be developed and incorporated 
in commercially available packages.

As far as large system studies are considered, following 
the establishment of appropriate equivalent/aggregate 
models of different devices, the key issue to address is 
appropriate modelling of uncertainties involved with 
generation and load. Again, the effort should be directed 
towards efficient representation of all uncertainties 
involved and the consequences of network disturbances 
on system security and stability. Probabilistic and 
risk based methodologies should be developed and 
incorporated in commercially available packages for large 
system studies.



Considering that adoption of Probabilistic and risk based 
methodologies would be a significant departure from 
current practice and that there is lack of understanding 
and interpretation of results of these studies, both in 
industry and academia, a series of continuing professional 
development courses should be offered to highlight 
some of the key aspects of these types of mathematical 
approaches and their suitability to practical problems 
faced by electrical power industry.  Preliminary results 
[103]-[107] have indicated that this could be a way forward 
for simulating large networks of the future.

• �Efficient use and reliance on global monitoring data 
(WAMS) for state estimation, dynamic equivalents and 
control (including, but not limited to, real time control).

 �Optimal placement of monitoring devices (PMUs 
or other), though this may not be an issue as over 
the years number of monitors in the network will 
increase, should be (re)addressed from the point of 
view of existing monitoring framework. Considering 
that there are already a number of monitoring 
devices in the network of varying types, accuracy 
and functionality, where should new ones be placed 
to achieve full observability and subsequently 
controllability of the network? 

 �The PMU, or any other monitor placement 
methodologies should consider accuracy of devices 
in data capture and accuracy of derived parameters 
(e.g., voltage phase angle and magnitude are 
captured at non generator bus in the network but 
generator speed and angle are needed for on line 
stability assessment).

 �Signal processing/aggregation/transmission (including 
delay or complete loss) for dynamic observability, i.e., 
identifying dynamic response of the system close 
to real time. Different classification and clustering 
techniques should be used for fast identification of 
system dynamic signature following disturbance. The 
dynamic signature of the power system with non-
conventional PE connected generation (power system 
with reduced inertia) and PE connected load would 
be particularly challenging to estimate. 

 �A time line defining accuracy of the estimation 
against the speed of estimation should be established 
for different parameters and dynamic phenomena to 
be estimated (e.g., the transient stability of the system 
can be estimated with 99% accuracy 0.5s after the 
fault with 15 PMUs and with 97% with 5 PMUs; 
Dynamic behaviour of groups (coherent) of 
generators can be described with 98% accuracy 0.8 s 
after the fault; etc.) 

Comment: In addressing the issues above attention should 
be paid to required accuracy of information that WAMS 
or other monitors should provide [108]-[111]. Starting 
from the type of study that the data will be used for, the 
error margin for parameters to be estimated/identified 
from measurements should be established and the effort 
directed towards achieving it. Appropriate sensitivity 
analysis should be carried out to establish required 
accuracy of estimated parameters (and the time when 
these parameters would be required in case of corrective 
control action) before the issue of parameter estimation 
is addressed [112]-[114]. While on-line estimation of 
system dynamic signature of conventional power system 
is very challenging task on its own, the issue becomes 
even more challenging when the significant portion of 
generators are non-conventional (synchronous) and 
when the system response to disturbances, in short time 
scale in particularly, may be significantly different due to 
reduced system inertia (generators, hence the inertia of 
rotating masses are decoupled from the system by PE 
convertors). In case of reduced inertia systems there is 
also lack of experience with and understanding of system 
transient responses. A range of studies would need to 
be performed on these systems prior to attempting to 
estimate their dynamic signature in real time. These 
studies, carried out using realistic networks of different 
complexities and having different levels of penetration 
of non-synchronous generators, should result in “data 
base(s)” of typical responses depending on the type of 
study (angular stability, frequency stability, voltage stability, 
fault studies, etc.) and the level of penetration of different 
“inertia-less generation/storage technologies”. A threshold 
(for each type of study and inertia-less generation/
storage technology mix) should be established beyond 
which further penetration of these new technology types 
would significantly affect system transient performance 
so that new system control approaches would need to 
be applied. In other words, the question “How far can 
we go with integration of inertia-less generation/storage 
technology in the network without having to change some 
aspect of system dynamic control and what is the extent 
of changes that need to be made depending on the level 
of penetration?”

• �Design of supplementary area controllers based on 
WAMS to control and stabilise large system (including 
but not limited to real-time) or parts (which may vary) of 
it with uncertain power transfers and load models and 
stochastically varying and intermittent generation 
and demand. 
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 �The key issue to consider here is the fact that there 
are already local controllers in the system (e.g., 
PSSs, OLTCs) and that they are going to continue 
to be present and perform allocated tasks. New 
controllers should be acting only when needed and 
in addition to existing local controllers and they 
should accommodate variability in controlled plant 
parameters. In controller design probabilistic and 
stochastic control methodologies should be explored 
and their performance compared (advantages vs. 
disadvantages) against established conventional 
techniques. The new area/system supplementary 
controllers do not need to be necessarily designed 
using probabilistic/stochastic control methodologies 
or artificial intelligence methods as long as they can 
perform allocated tasks. 

 �Possibility of having area controllers with variable 
number of inputs and outputs (the number of I/O 
may change depending on identified disturbance 
and area that needs to be controlled) should be 
explored and feasibility of these types of both off-line 
and on-line controllers explored.  

• �Design of hierarchical, adaptive control systems/
structure for power networks with fully integrated 
sensing and ICT technologies. The consensus control, 
for example, may be an option considering potentially 
thousands of individual devices (including different 
generation, storage and load technologies) in the 
network and a number of existing or new local/area 
controllers.

• �Modelling/analysis of efficient and effective integration 
of different energy carriers into self sufficient energy 
module/cell. 

4. SUMMARY

In summary, the future  power networks need to be 
modelled and operated by exploiting possibilities offered 
by state-of-the-art WAMS, integrated ICT systems and 
“intelligent” PE devices and using non-deterministic 
& close to real time approaches for (energy) system 
control and operation; and stochastic, probabilistic and 
computer intelligence based models, data handling and 
methodologies to minimise the effect of uncertainties and 
maximise the use of information contained in available 
data. In order to facilitate a smooth transition to the 
efficient and secure operation of future power systems the 
following challenges should be addressed: 

• �Modelling of new types of PE interfaced generation, 
demand, storage, transmission and communication 
technologies (RES interface, HVDC, FACTS devices, PE 
interfaced loads, storage) 

 ��large interconnected networks with mixed generation, 
FACTS and short/long distance bulk power transfers 
using HVDC lines of different technologies

 ��clusters of RES (generation and storage) of the same 
or different type 

 �static and dynamic aggregate models for different 
types of studies with clear specification of modelling 
requirements and bounded parameter values

 �LV and MV distribution network cell (DNC) with 
thousands of RES

 �Demand, including new types of energy efficient 
and PE controlled loads, customer participation and 
behavioural patterns, EV, etc. 

• �Increased reliance on global (WAM) signals but also 
on global increase in network monitoring at all voltage 
levels, calling for

 �advanced steady state and dynamic state estimation 
(observability of the network), dynamic equivalents 
at different time scales and application for control & 
stability considering associated spatial and temporal 
uncertainties 

 ��efficient data management (signal capture, processing, 
aggregation, transmission) and analysis (clustering 
and classification techniques for knowledge extraction)

 ��ICT network reliability and interaction with power 
network 

 �Increased penetration of power electronic 

• �Increased uncertainties in controlled plant (system) 
both in terms of model uncertainties and operational 
uncertainties, calling for

 �robust, (self) adaptive control strategies and 
probabilistic plant modelling 

 �probabilistic, risk based assessment of system 
operation both steady state and dynamic 

 �assessment of system control/stability/power quality 
contribution by new types of generation/load/storage
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 �design of supplementary controllers based on WAMS 
to control and stabilise large system (including but 
not limited to real-time) or parts of it (which may vary) 
with uncertain power transfers and load models and 
stochastically varying and intermittent generation, 
demand and storage – stochastic/probabilistic control

 �design of new control systems/structure (hierarchical, 
adaptive, close to real time) for power networks 
with fully integrated sensing, ICT technologies and 
protection systems – risk limiting control 

The extent and the timeline of the activities addressing 
modelling requirements specified above will depend 
on the type of studies that they are aiming at (planning, 
operation, control, etc.) The key requirement though 
is that in all cases as realistic as possible scenarios are 
used and that clear recommendations are given for 
different types of studies and different phenomena (faults, 
planning, angular and frequency stability, etc.) considered 
so that they can be transferred to industrial practice as 
soon as possible.
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