
ISA Working Group 2020 Webinar Series
(Webinar will commence at 11:05 am)

Are you interested in joining the ISA Working Group? Let us know by e-mailing SEP@theiet.org

Assurance in a Connected World
Webinar 3: Procuring Software Intensive Systems – Pitfalls and Recommendations

Panellists
Rosanna Butters – Speaker

Stephen Hatton – ISA WG Chair
Pete Hutchison – ISA WG Deputy Chair

John Canning – ISA WG Secretary
Tim Clement – ISA WG Member

Matthew Bassett – ISA WG Member

ISA WG Terms of Reference – Purpose

• Promote the ISA role as a means of providing independent safety
assurance of products to the supplier, purchaser and user

• Promote the ISA role of a safety professional in standards
• Support professional development by defining minimum standards,

identifying training that meets minimum standards and supporting
resources

• Support professional ISAs by developing guidance and providing
information that affects their role

Guidance – Published
• General

• ISA Working Group Terms of Reference
• What is Independent Safety Assessment (ISA)? in Review for update

• Professional
• ISA Code of Practice for Independent Safety Assessors (ISAs)
• Competency Framework for Independent Safety Assessors (ISAs)

• Substantive Guidance
• Assessment of Safety Related Compliance Claims (SRCC)
• Guidance on the Procurement of Independent Safety Assessors

• Guidance Notes / Position Papers
• Guidance on the Use of Accident and Incident Data by ISAs
• Documents useful to Independent Safety Assurance
• Position Statement on Security, Safety and ISA

Assessing a Safety Case Series

• Assessing a Safety Case Series
• Guidance for Producing an ISA Plan for Assessing a Safety Case published
• Guidance on Safety Assessment Reports to be published
• Guidance on Degree of Rigour in progress

Documents in Development

• Standards Group
• Requirements for independent review/assessment called up in Standards and Industry

Guidance
• Environment Assurance and Safety Assurance

• Professionalism Group
• Using Key Performance Indicators with an ISA Contract ready for issue
• Agile Development – FEEDBACK BEING SOUGHT (Please complete our questionnaire!)

Housekeeping

• Q&A (Zoom Webinar)
• Use Q&A button to type your question (don’t use chat button; don’t raise hand)
• Use ‘thumbs up’ to vote up or vote down a question (once only)
• Panellists will select and discuss questions
• Questions not discussed today will be recorded and commentary provided afterwards

• Feedback
• Short re-cap article after the event
• Please read and complete our questionnaire (to be e-mailed to you)

• Questions organised around the structure of the presentation
• No need to answer all questions

• Let us know if you’re interested in joining the ISA Working Group

Procuring Software Intensive Systems – Pitfalls and
Recommendations

Rosanna Butters
Rosanna (Rose) has an MA in Modern History and Spanish from the University of St Andrews and
an MSc in Project and Enterprise Management from University College London. Prior to working
for Transport for London (TfL) she worked for a gas consultancy and for a publication on Latin
American legal matters. She has been working for TfL for five years, on a variety of civils projects,
and for the past 18 months has been Project Manager for software on the Four Lines
Modernisation (4LM) programme, one of the largest signalling upgrades in Europe. Outside her
day job she carries out research into Organisational Learning and last September presented a
paper on knowledge management tools at the European Conference on Knowledge Management
in Lisbon.

A collation of the recommendations from
industry specialists on best practice for the
procurement and management of software
intensive systems

Rosanna Butters

Procuring software
intensive systems – pitfalls
and recommendations

Background of the findings

Founder of a critical
systems software

company

Safety-critical
software

consultancy

Electronic and
automated services

conglomerate

Multinational
security and

aerospace company

Safety-critical
computer system

consultancy

Contributors

The purpose

Transport for London often procures software intensive systems and the
increasing prevalence of automated systems and artificial intelligence
indicates that these contracts will become even more common.

Yet the numerous benefits of software intensive systems should be balanced
against the potential for serious incidents. Several high profile incidents
relating to software have made headlines in recent years, emphasising how
critical it is to safely manage the implementation of such systems.

To help TfL safely prepare for a more autonomous future, this research was
carried out as a continuous improvement project.

Project overview

Five organisations specialising in safety
critical software were asked about:

Best
practice

Bad
practice

Risks

Mitigations

Tips

Inform time
estimates

Improve cost
forecasts

Better
understand

risk

Their answers should help

The information in this presentation is exclusively from other
organisations and is not based on TfL experience or recommendations

What are the main problems in Safety Critical Software projects?

Ambiguous
requirements

Inadequate
change

management

Underestimated
time and budget

Complexity - and
a lack of

appreciation of it

Multiple
interfaces

Software
development

project stages:

Requirements

Scope definition

Delivery
approach

Risks and
mitigations

Monitoring
quality

Implementing
change

Resource needs

Testing – the
what

Testing – the how

Post-
commissioning

Eliciting the details, necessity and gaps
of requirements at the outset is the key

to success at all stages.

The Early Lifecycle Stages

Establishing the scope

Customers hate surprises
but if you can’t specify what

you want you will get a
surprise

Is an upgrade or
a whole new

system better?

Strike a balance between
contractor and client risk when

choosing between a tailor-made
or off-the-shelf system

Minimising complexity is
very very important

• Include as much information as
possible about the target
environment of the system

• Identify areas of greatest
uncertainty at the start of the
project

• Use joint interface specifications
and joint tests through all the
different stages of the V-model to
minimize the need for late changes.

Key tips on eliciting and specifying requirements

Supplier Relationships The relationship should
exceed a mere delivery-

contract, and be more like a
sustainable long-term

partnership.

Structures

Partnerships
Supplier

frameworks

Processes

Joint
development
of the design
pre-contract

Potential
conflicts of

interest

Select the most
appropriate

processes (not
just the client’s

by default)

People

Embedded
engineers

Face-to-face
time

Competency

Quick
communication

channels and
decisions

An agile approach?
When does agile work best?

Agile is best suited to changes to an existing system, where the
fundamental architecture and design does not need to change for the

new features to be added.
If this is not the case, the time and cost of the development is likely to
increase drastically, or reliability and maintainability is likely to suffer.

When is agile not a suitable approach?

Highly regulated environments, such as rail and aerospace, have assurance
requirements that hamper the agile development model as:

• They require assurance loops that are not suitable for scrums, as scrums
are designed to accommodate changes in requirements.

• It is not easy to provide the strong evidence of the system level properties
of safety, security and reliability, using the tests in agile process

An agile approach?

Benefits

 Prevents wasted effort
 Helps deal with complexity
 More flexible
 Reduces costs

Dangers

 Not good for systems that have not been created before
 Doesn’t provide adequate documentation for systems with a long service lifetime
 Increases the risk of deviation from requirements
 Not appropriate for highly regulated environments

Key considerations for writing the contract

We allocated 20% of the budget to
change up front, which made it clear
that the client would pay for client-

driven changes. The contractor was only
paid the money from this pot if the

change was approved at a joint change
board

Level of risk being taken
on by each party

Sufficient time and budget allocated for
testing and rework

The requirements should be:

Set before design
starts

set at the sub-
system (not the
functional) level

Impact of making
changes to existing

systems

Managing Progress Throughout
the Lifecycle

Mitigation

Copying buggy code and incorporating off-
the-shelf components

Increasing levels of uncertainty

Lots of people on the project less
efficiency shortcuts

Lots of non-critical defects could indicate
critical defects.

Warning sign

Root cause analysis
Automated testing

Define and conquer risk.

Understand the interfaces and be realistic about
the schedule and budget.

Pyramid assessment
Out of the box questions

Mitigation

Claims about the system not substantiated by
evidence

Lack of transparency

Combining high integrity systems

Manual coding

Code not being checked by
senior/independent reviewers

Warning sign

Robust qualitative and quantitative evidence

Non-disclosure agreements

Master-slave system
Rigorous testing
Staged integration

Automate coding

Enforce approved reviewal structure

Mechanisms for monitoring the health of software development

Changes in the metrics below can indicate a change in the quality of the software,
prompting mitigation actions or further investigation:

Number of
errors per

lines of
code

Number of
critical
defects

Code
review rate

per hour

Fuzz test
failure

Defect
removal

efficiency

Audits

Audits can be constructive ways of understanding current progress, gauging quality
and identifying improvements. Some tips are:

Identify where in
the process the
error occurred

Audit hardware
and software

In-depth reviews
better than

frequent ones

Conduct audits in
person at their

office

Lead by example

Cyber security

When managing cybersecurity, remember the following:

Manage
cybersecurity with

the same processes
and attention as

safety

If an error message
appears about a system

failure, don’t just assume
the message is correct –

lots of cybersecurity
issues start with this

problem

If it’s not secure, it’s
not safe – any claims

made about how safe a
system is are not valid

unless they are also
informed by security

Consider cybersecurity
and safety throughout the

entire project lifecycle,
from procurement to de-

commissioning

Detailed guidance on protecting assets, developing a security strategy and adopting the right mindset when
thinking about cybersecurity can be found on the Centre for Protection of National Infrastructure website

https://www.cpni.gov.uk/

The quantity of changes to requirements can overwhelm the
project so change management should:

Change management Often people assume it’s
just a case of “adding a
couple of lines of code”

Be managed jointly
with suppliers

Adopt a system-level
view

Collate smaller, less
urgent, changes to
review in batches

Acknowledge time and
cost impact

Testing the Software

Testing requirements

When deciding what tests to use, think about:

• Are you using tests to build confidence or to get rid of bugs?
• Different tests can be used to target critical areas
• Is the required confidence level defined in the contract?
• What are your assumptions?
• What is the purpose of the system?
• What went wrong in failures in similar projects?

If elements are outsourced,
do the developers still

understand the context?

Illustrative examples

The Cambrian Temporary
Speed Restriction incident
shows the importance of a
robust checking process,

particularly when part of a
non-standard process

The Boeing 737 Max crashes
illustrated why operators
need to understand the

system and the danger of
single-points of failure

The Ariane 5 flight failure
shows the criticality of

complete simulations and
understanding restrictions

Loss of Safety Critical Signalling Data on the Cambrian Coast Line - 2017

Link to report
What happened?
• Temporary speed restriction (TSR) of 30kph exceeded by 50kph

Causes
• Software was single point of failure for TSR data and signalling display
• No independent check of TSR data upload
• System safety justification in a non-standard format, meaning changes to

design not identified and lack of clarity of design not noticed

Learning points
• Technical solution should remove need for humans to check

automatically updated speed restrictions
• Train drivers should report inconsistencies in data provided to them
• Independent Safety Assessors should understand scope of checks

undertaken by other bodies and apply extra vigilance if documents are
part of a non-standard process

• The specified level of safety must be achieved when implementing TSRs
• Clients must undertake client role when procuring high-integrity

software

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwij1r-Ol-_oAhV3VxUIHQ-wBOEQFjAAegQIAhAB&url=https://www.gov.uk/government/news/report-172019-loss-of-safety-critical-signalling-data-on-the-cambrian-coast-line&usg=AOvVaw02Y_yVGHgrq8e3Q7GblZDQ

Ariane 5 Flight 501 failure - 1996
Link to report
What happened?
• At an altitude of about 3700 m, the launcher veered off its flight path, broke up and

exploded.
Causes
• Ariane 5 had a higher a horizontal velocity than Ariane 4 but used the same software
• The design change to not protect the inertial system computer was not properly

understood
• The specification of the inertial reference system and tests performed did not

specifically include the Ariane 5 trajectory data
• It was decided to use the simulated output of the inertial reference system, not the

system itself or its detailed simulation
Learning points
• Prepare a test facility including as much real equipment as technically feasible, inject

realistic input data, and perform complete, closed-loop, system testing.
• Complete simulations must take place before any mission.
• All restrictions on use of the equipment shall be made explicit for the Review Board.
• Make all critical software a Configuration Controlled Item (CCI).
• Include external participants when reviewing specifications, code and justification

documents.
• Give justification documents the same attention as code
• Close engineering cooperation, with clear cut authority and responsibility.

http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

Boeing 737 MAX (Lion Air flight) - 2018
Link to report
What happened?
• 346 people died in crashes resulting from nosedives caused by the MCAS,
a new automated flight control which Boeing omitted from crew manuals
Causes
• Boeing assumed that:

• the MCAS function is automatic;
• the responses for it are the same as for existing procedures;
• and that crews were not expected to encounter MCAS in normal operation.

• Boeing did not provide information and additional training requirements for the 737-8 (MAX) since the condition was
considered similar to previous 737 models.

• Human error was not included in the probability analysis, even though the flight crew is often used as a means to
mitigate a failure condition.

• The design of MCAS relied on input from a single sensor, making it susceptible to a single point of failure.
Learning points
• Failure Mode and Effects Analysis would have been able to identify single-point and latent failures which have

significant effects as in the case of MCAS design.
• Consider the effect of all possible flight deck alerts on flight crew response
• Closely scrutinize the development and certification process for systems whose malfunction can lead to loss of control

of the airplane.
• Provide flight crew with information and alerts to help them understand the system and know how to resolve potential

issues

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwij1r-Ol-_oAhV3VxUIHQ-wBOEQFjAAegQIAhAB&url=https://www.gov.uk/government/news/report-172019-loss-of-safety-critical-signalling-data-on-the-cambrian-coast-line&usg=AOvVaw02Y_yVGHgrq8e3Q7GblZDQ

What are the key
recommendations?

It’s likely that much of the content
in this presentation is familiar to

you, but our peers in industry are
telling us that these are areas

where software intensive systems
often fall down, so key things we

should remember are...

Key lessons: day-to-day

Clarify requirements and areas of
uncertainty early and monitor

progress against them

Monitor the metrics, warning
signs and processes to address

problems at their cause

Be realistic about the functional, cost
and time impact of changes – and

whether they are needed at all

Ensure there’s face-to-face
contact and direct

communication channels

Key lessons: longer term

Establish a stronger client-
contractor relationship

internally within
organisations, reducing the

temptation to change
requirements

Allow a larger proportion of
budgets and programmes to be
allocated to rework and testing

Invest in long-term
supplier

relationships

Next Events in the Series
Webinar 4: Sufficient Assurance?

(Wednesday 2 December at 11:00)

Webinar 5: AI and Functional Safety
(Thursday 17 December at 11:00)

(Register at IET Events)

Are you interested in joining the ISA Working Group?

Let us know by e-mailing SEP@theiet.org

	ISA Working Group 2020 Webinar Series�(Webinar will commence at 11:05 am)��Are you interested in joining the ISA Working Group? Let us know by e-mailing SEP@theiet.org��Assurance in a Connected World
	ISA WG Terms of Reference – Purpose
	Guidance – Published
	Assessing a Safety Case Series
	Documents in Development
	Housekeeping
	�Procuring Software Intensive Systems – Pitfalls and Recommendations�
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	�Next Events in the Series�Webinar 4: Sufficient Assurance?�(Wednesday 2 December at 11:00)��Webinar 5: AI and Functional Safety�(Thursday 17 December at 11:00)��(Register at IET Events)�

