Units \& Symbols for Electrical \& Electronic Engineers

Preface

A booklet, Symbols and Abbreviations for use in Electrical and Electronic Engineering Courses, was published by the Institution of Electrical Engineers in 1968 and 1971. To take account of the many revisions and additions to British and International Standards since then, a new and fully revised edition was published in 1979, with reprints in 1980 and 1983.

In 1985, the editorial panel reconvened and undertook a total review and update of the Symbols and Abbreviations booklet, prior to it being re-issued under its new title in the professional brief series, in 1986. Further reviews of the contents were undertaken in 1991 and 1996. Any comments on the present content, or suggestions for additional material, will be welcomed. Please address comments to the Secretary of the Institution.

The booklet is for use by students and staff in colleges and universities, as a reference for authors of papers and books on electrical and electronic engineering and related subjects, and as a guide for draughtsmen and designers in industry.

Appendix A lists the standards which have been used in the preparation of this Guide.

Contents

Introduction 1

1. Abbreviations for words and phrases 2
2. Printing conventions 3
Letter symbols, subscripts 3
3. Unit symbols 4
Compound symbols 4
4. Numerical values 5
The decimal sign 5
Multiplication of numbers 5
5. The International System of Units 6
SI base units and supplementary units 6
SI derived units 7
Non-SI units 7
6. Quantity symbols for mechanics, thermodynamics, illumination 8
7. Quantity symbols for electrotechnics 10
8. Subscripts and other uses of letters and numbers 13
General 13
Semiconductors 15
9. Mathematical symbols 16
10. Physical constants 18
11. Conversion factors 19
Length 19
Area, Volume 19
Mass, Density 19
Velocity 19
Force, Pressure, Torque 20
Energy, Power 20
Nucleonics, Radiation etc. 20
Special remark on Logarithmic quantities and units 20
12. Graphical symbols 22
Connections and network elements 22
Power plant 23
Electronic devices 23
Logic symbols 24
Optic fibre symbols 25
Telecommunication symbols 25
Microwave devices 26
Flowchart symbols 26
13. Some abbreviations 27
Commonly used abbreviations in optical, logical and microprocessor circuits 27
Component identification abbreviations 28
14. Letter and digit code for R \& C values 29

Appendices

$\begin{array}{ll}\text { A List of Standards used in compilation of 'Units \& Symbols' } & 30 \\ \text { B Typefaces used. English alphabet, Greek alphabet } & 31\end{array}$
B Typefaces used: English alphabet, Greek alphabet

Introduction

In the expression I = 16 mA , I is the quantity symbol for the physical phenomenon of electric current, and 16 is its numerical value in terms of the decimal submultiple (10-3) of a unit (ampere) of current; $m A$ is the unit symbol for milliampere. Other symbols (such as $\mathrm{j}, \exp , \mathrm{Cu}$) are used to indicate mathematical operations, chemical elements etc. Frequently occurring technical phrases are commonly rendered as abbreviations (such as e.m.f., p.d.). In circuit diagrams, graphical symbols identify network components and devices.

International letter symbolism is based on the Roman and Greek alphabets. There are fewer than 90 distinctive capital and small letters to represent some thousands of scientific and technical quantities, and extensive duplication is unavoidable. Priority is given here to electrical, electronic and manufacturing engineering, and quantities in associated fields are, where necessary, assigned alternative or second-choice symbols.

The units and symbols listed throughout this booklet conform to the recommendations of the International Electrotechnical Commission (IEC) and the British Standards Institution (BSI). Additionally, because of their common usage, in the Logic Symbols under Section 12 some distinctive-shape binary logic symbols have been used.

1. Abbreviations for Words \& Phrases

Well known abbreviations, such as those listed below, are set in small roman (lower-case upright) letters, except for proper names, the unit system (SI), at the start of a sentence (e.g. A.C., not A.c.), and in titles and table headings where preferred:

Alternating current*	a.c	Phase \dagger	ph.
Direct current*	d.c.	Potential difference	p.d.
Electromotive force	e.m.f.	Power factor	p.f.
Per unit	p.u.	Root mean square	r.m.s.

*Adjective only, as in a.c. motor, d.c. circuit.
\dagger As in 3-ph. Supply
Ad hoc abbreviations (such as s.s.b. for single sideband) may be employed subject to an initial use in context of the full expression. Some acronyms (e.g. radar, laser) are used as nouns. The use of capital letters without full points for some abbreviations is common, particularly in the fields of logic, computers and microprocessors (see Commonly used abbreviations in optical, logical and microprocessor curcuits in Section 13).

2. Printing Conventions

For clarity, in scientific and technical literature, different types of object are printed in different typefaces. The normal printing conventions are as follows:

Object	Typeface	Examples
unit symbols	Roman	$\mathrm{Hz}, \mathrm{s}, \mu \mathrm{m}$
scalar physical quantities	Italic	f, t
vestor physical quantities*	Italic boldface or	$\overrightarrow{\boldsymbol{B}}$,
numbers and numerical constants	Italic with arrow	$\overrightarrow{A B}$
numerical variables	Roman	$17, \pi, \mathrm{e}$
matricies	Italic	$x, x_{n^{\prime}} f(x)$
standard mathematical functions	Italic boldface	\boldsymbol{A}

Note: the four styles of typeface are (using the letter A as an example):

Roman (or 'upright'):	A	Roman boldface:	A
Italic (or 'sloping'):	A	Italic boldface:	\boldsymbol{A}

*this typeface also applies to phasor physical quantities

Letter symbols, subscripts

Letter symbols should be used with consistency (e.g. only L for self-inductance, only P for power), but distinguishing subscripts can be attached (e.g. L_{1} and L_{2}). Upper-case letters (e.g. V, I) are used for steady, mean and r.m.s values; lower-case letters for instantaneous values which vary with time (e.g. V, i). Maximum, minimum and average are indicated by subscripts (e.g. $\mathrm{V}_{\max }, \mathrm{V}_{\text {min }}$, V_{av}).

3. Unit Symbols

Unit symbols are printed in upright roman characters and are used after numerical values (e.g. 10 A , but 'a few amperes'). They are the same in singular and plural, and are not followed by a full point except for normal punctuation, e.g. at the end of a sentence. A space is set between the number and its unit symbol (e.g. 230V, not 230 V). The decimal multiples and submultiples given below are prefixed, without a space, to the unit symbols (e.g. 6.6 kV). Compound decimal prefixes should not be used (e.g. pF , not $\mu \mu \mathrm{F}$).

					10^{-3}	milli	m
10^{24}	yotta	Y			10^{-6}	micro	μ
10^{21}	zetta	Z			10^{-9}	nano	n
10^{18}	exa	E	10^{2}	hecto	h	10^{-12}	pico
10^{15}	peta	P	10^{1}	deca	da	p	
10^{12}	tera	T	10^{-1}	deci	d	10^{-15}	femto
10^{9}	giga	G	10^{-2}	centi	c	f	
10^{6}	mega	M				10^{-18}	atto
10^{3}	kilo	k				10^{-21}	zepto

Powers in steps of 3 are preferred, but some others have common usage (e.g. centimetre cm , decibel dB).

Compound symbols

In a compound unit symbol, multiplication is denoted by either a dot or a space (e.g. $\mathrm{N} \bullet \mathrm{m}, \mathrm{Nm}$). The last form may also be written without a space, provided that special care is taken when the symbol for one of the units is the same as the symbol for a prefix, e.g. mN means millinewton, not metre newton. Unit division may be indicated by a solidus (e.g. V/m). Not more than one solidus should appear in a combination (e.g. $5 \mathrm{~m} / \mathrm{s} 2$, not $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$). In some cases parentheses or negative powers may be used for clarity (e.g. $1 / \mathrm{s}$ or $\mathrm{s}-1$; $\mathrm{J} /(\mathrm{m} \mathrm{s} \mathrm{K}$) or J m-1 s-1 K-1).

4. Numerical Values

Numbers should generally be printed in roman (upright) type. To facilitate the reading of numbers with many digits, these may be separated into suitable groups, preferably of three digits, counting from the decimal sign towards the left and the right; the groups should be separated by a small space, and never by a comma or a point, nor by any other means.

The decimal sign

The IEC and the BSI indicate that a comma on the line is the preferred decimal sign. In most British Standards, most UK literature, and all USA literature it is the practice to use a dot on the line as the decimal marker. In order to avoid confusion the IEE adopts the convention of English literature publications and uses a dot on the line as the decimal marker.

Multiplication of numbers

In the UK the preferred sign for the multiplication of numbers is a cross (X); if a dot is used as the decimal sign, the cross must be used. (A dot half-high may be used as the multiplication sign for numbers, but in this case a comma should be used as the decimal sign.)

5. The International System of Units

The International System of Units (SI) establishes three kinds of units: base, supplementary, and derived, discussed in the following sub-sections under Section 5. In addition, various other units, listed under the sub-heading Non-SI Units, are recognised for continued use alongside SI units. Many obsolescent non-SI units are listed in Section 11, where conversion factors are given.

SI base units and supplementary units

There are seven base units and two supplementary units, as shown below:

Base quantity	Name of SI base unit	Unit symbol
length metre m	metre	m
mass kilogram kg	kilogram	kg
time second s	second	s
electric current	ampere	A
thermodynamic temperature kelvin K	kelvin	K
amount of substance mole mol	mole	mol
luminous intensity candela cd	candela	cd
		rad
plane angle radian rad	radian	sr
solid angle steradian sr	steradian	

The definitions of these units are as follows:

- metre (m): the metre is the length of the path travelled in vacuum by light during (1/299792458) second.
- kilogram (kg): the mass of the international prototype of the kilogram.
- second (s): the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
- ampere (A) : that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10^{-7} newton per metre of length.
- kelvin (K): the unit of thermodynamic temperature is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water (but see footnote*).
- candela (cd): the luminous intensity, in a given direction, of a source which emits monochromatic radiation with a frequency 540×10^{12} hertz and whose energy intensity in that direction is (1/683) watt per steradian.
- mole (mol): the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
- radian (rad): the plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius.
- steradian (sr): the solid angle which, having its apex at the centre of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere.

The supplementary units 'radian' and 'steradian' are to be regarded as dimensionless derived units which may be used or omitted in the expressions for derived units.

* In addition to the thermodynamic temperature (symbol T), expressed in kelvins, use is also made of Celsius temperature (symbol t) defined by the equation $t=T-T_{0}$ where $T_{0}=273.15 \mathrm{~K}$ by definition. The unit 'degree Celsius' is equal to the unit 'kelvin', but 'degree Celsius' is a special name in place of 'kelvin' for expressing Celsius temperature. A temperature interval or a Celsius temperature difference can be expressed in degrees Celsius as well as kelvins, but kelvin is to be preferred.

SI derived units

The units of all physical quantities are derived from the base and supplementary SI units, and certain of them have been named. These, together with some common compound units, are given here:

Quantity	Unit Name	Unit Symbol	Expression in terms of SI base unit
force	newton	N	$\mathrm{mkg} \mathrm{s}{ }^{-2}$
energy	joule	J	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
power	watt	W	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
pressure, stress	pascal	Pa	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$
electric potential	volt	V	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
electric charge	coulomb	C	s A
electric flux	coulomb	C	s A
magentic flux	weber	Wb	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$
magnetic flux density	tesla	T	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$
electric resistance	ohm	Ω	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
electric conductance	siemens	S	$m^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{3} A^{2}$
capacitance	farad	F	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
inductance	henry	H	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
Celsius temperature*	degree Celsius	OC	K
frequency	hertz	Hz	s^{-1}
luminous flux	lumen	Im	cd sr
activity (of a radionuclide)	becquerel	Bq	s^{-1}
absorbed dose	grey	Gy (=J/Kg)	$\mathrm{m}^{2} \mathrm{~s}^{-2}$
dose equivalent	sievert	Sv (=J/Kg)	$\mathrm{m}^{2} \mathrm{~s}^{-2}$
mass density	kilogram per cubic metre	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{m}^{-3} \mathrm{~kg}$
moment of force	newton metre	Nm	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
torque	mewton metre	N m	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
electric field strength	volt per metre	V / m	$\mathrm{m} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
electrical displacement	coulomb per square metre	$\mathrm{C} / \mathrm{m}^{2}$	$m^{-2} s A$
magnetic field strength	ampere per metre	V / m	$m^{-1} A$
thermal conductivity luminance	watt per metre kelvin candala per square metre	$\begin{gathered} \mathrm{W} \mathrm{~m} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \\ \mathrm{~cd} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{m} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~K}^{-1} \\ \mathrm{~m}^{-2} \mathrm{~cd} \end{gathered}$

*See footnote to previous sub-section - SI base units and supplementary units

Non-SI units

Some commonly used units not within the SI range are:

```
angle degree ( }\mp@subsup{1}{}{\circ}=\Pi/180 rad); minute (1' = (1/60) ')
    second (1" = (1/60)'); revolution (1 r = 2\Pirad)
    calorie (cal); electronvolt (eV); watt-hour (W h)
energy
    ångström (Å)
length
    ton (ton); tonne (= metric ton) (t)
    unified atomic mass unit (u)
    atmosphere (atm); bar (bar); torr (Torr)
pressure, stress
rotational frequency
time
    revolution per minute (r/min)*, revolution per second (r/s)*
    minute (min); hour (h); day (d); year (a)
volume
    litre (L, I or litre)
```

*These are widely used for rotational frequency in specifications of rotating machinery.

6. Quantity Symbols for Mechanics, Thermodynamics, Illumination

As noted in Section 2, an italic typeface is used for quantity symbols.

Quantity	Symbol	SI Unit
acceleration, angular	α	$\mathrm{rad} / \mathrm{s}^{2}$
acceleration, linear	a	$\mathrm{m} / \mathrm{s}^{2}$
acoustic pressure	ρ	Pa
angle, plane	α, β, γ	rad
angle, solid	Ω	sr
angular momentum	L	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
area, surface area	A, S	m^{2}
bulk compressibility	K	$\mathrm{m}^{2} / \mathrm{N}$
coefficient of heat transfer	α	W m ${ }^{-2} \mathrm{~K}^{-1}$
density	ρ	$\mathrm{kg} / \mathrm{m}^{3}$
efficiency	η	-
energy	E	J
energy, kinetic	E_{k}	J
energy, potential	E_{p}	J
energy, volume density	$\stackrel{\sim}{W}$	$\mathrm{J} / \mathrm{m}^{3}$
enthalpy	$H(=U=p V)$	J
entropy	S	J/K
force	F	N
frequency	f	Hz
frequency, angular	ω	rad/s
friction, coefficient	μ	-
friction, force coefficient	F	Ns / m
friction, torque coefficient	F	N m s/rad
Gibbs function	$G(=U+p V-T S)$	J
heat, quantity of heat	Q	J
heat, heat capacity	C	J/K
heat, specific heat capacity	c	$\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
heat, flow rate	$\phi_{\text {th }}$	W
heat, density of heat flow rate	q	W/m²
Helmholtz free energy	A, F $(A=U-T S)$	J
illumunance	E	Lx
internal energy	U	J
isentropic exponent	$\left.K=-\frac{V}{p}\left(\frac{\partial p}{\partial V}\right)_{s}\right)$	-
kinematic viscosity	v	$\mathrm{m}^{2} / \mathrm{s}$
length	1	m
luminance	L	$\mathrm{cd} / \mathrm{m}^{2}$
luminous flux	ϕ	Im
luminous intensity	1	cd
mass	m	kg
mass flow rate	$q m$	kg/s
mechanical impedance	Z_{m}	Ns / m
moduli, modulus of elasticity (Young)	E	Pa
moduli, longitudinal modulus of elasticity	E	$\mathrm{N} / \mathrm{m}^{2}$
moduli, sheer modulus, modulus of rigidity	G	$\mathrm{N} / \mathrm{m}^{2}$
moduli, bulk modulus, modulus of compression	K	$\mathrm{N} / \mathrm{m}^{2}$
moment of force	M	Nm
moment of inertia	J	$\mathrm{kg} \mathrm{m}{ }^{2}$

6. Quantity Symbols for Mechanics, Thermodynamics, Illumination (continued)

Quantity	Symbol	SI Unit
momentum	p	kg m/s
Poisson ratio	μ	-
pressure, stress	p	Pa
radius of gyration	k	m
ratio of specific heat capacities	$Y\left(=c_{p} / c_{\nu}\right)$	-
second axial moment of force	$1{ }_{\text {a }}$	m^{4}
second polar moment of area	i_{p}	m^{4}
specific heat capacity, constant pressure	c_{p}	-
specific heat capacity, constant volume	c_{v}	-
specific heat capacity, staturation	$C_{\text {sat }}$	-
strain, linear	ε	-
strain, sheer	Y	-
strain, volume strain, bulk strain	Θ	-
surface tension	Y	N/m
temperature, thermodynamic temperature	T, Θ	K
temperature, Celsius temperature	t,	oC
temperature interval	-	K
thermal, conductivity	λ, k	w m ${ }^{-1} \mathrm{~K}^{-1}$
thermal, resistance	$R_{\text {th }}$	K/W
time	t	s
time constant	T	S
torque	T	N m
velocity, angular	ω	rad/s
velocity, linear	v	m / s
viscosity	η	Pa s
viscosity, kimematic		$\mathrm{m}^{2} / \mathrm{s}$
volume	V	m^{3}
volume, specific	v	$\mathrm{m}^{3} / \mathrm{kg}$
volume, flow rate	g_{v}	$\mathrm{m}^{3} / \mathrm{s}$
weight	G	N
work	W	j

7. Quantity Symbols for Electrotechnics

Quantity	Symbol	SI Unit
admittance	Y	S
attenuation	A	$\mathrm{Np} \dagger \mathrm{dB} \dagger$
attenuation coefficient	α	m^{-1}
bandwidth	B	Hz
capacitance	C	F
charge	Q	C
charge density, surface	σ	$\mathrm{C} / \mathrm{m}^{2}$
charge density, volume	ρ	$\mathrm{C} / \mathrm{m}^{3}$
conductance	G	S
conductance, mutual	g_{m}	S
conductivity	Y, σ	S/m
control angle, rectifier	α	rad
control angle, inverter	β	rad
coupling factor	k	-
current	1	A
current density, area	J	$\mathrm{A} / \mathrm{m}^{2}$
current density, linear	A	A/m
current linkage	Θ	A
damping coefficient	δ	s^{-1} (or Np / s)
decrement, logarithmic	λ	-
dipole moment, electric	p	C m
dipole moment, magnetic	j	Wb m
dissipation factor	d	-
distortion factor	d	-
electric constant	ε_{0}	F/m
electric field, strength	E	V/m
electric field, level	L_{e}	Npt \dagger
electric flux	ψ	C
electric flux density	D	$\mathrm{C} / \mathrm{m}^{2}$
electric polarisation	P	$\mathrm{C} / \mathrm{m}^{2}$
electric susceptibility	$X_{E} \mathrm{X}_{\varepsilon}$	-
electromotive force	E	V
energy	E, W_{e}	J
energy, Fermi	ε	J \ddagger
feedback factor	β	-
frequency	f	Hz
frequency, angular	ω	rad/s
frequency, deviation	Δf	Hz
frequency, complex angular	p	s^{-1}
gain	G	-
group velocity	C_{g}, V_{g}	m / s
group delay		S
Hall coefficient	$\hat{R}^{\prime}{ }^{\prime} A_{h}$	$\mathrm{m}^{3} / \mathrm{C}$
impedance	Z	Ω
impedance, characteristic	Z_{0}	Ω
impedance, surge	Z_{0}	Ω
inductance, self	L	H
inductance, mutual	$L_{j k}, M$	H
leakage factor	σ	-

\dagger Not a SI unit but in common use—also see section 11 sub section Special remark on Logarithmic quantities and units
$\dagger \dagger$ Not a SI unit but in common use
\ddagger More usually expressed in eV

7. Quantity Symbols for Electrotechnics (continued)

Quantity
loss angle
magnetic constant
magnetic field strength
magnetic flux
magnetic flux density
magnetic flux linkage
magnetic (area) moment
magnetic polarisation
magnetic susceptibility
magnetic vector potential
magnetisation
magnetomotive force
mobility
modulation factor (a.m.)
modulation factor (f.m.)
noise factor
noise power
noise temperature
number density of particles
number of phases
number of pole pairs, pulses
number of turns
period
permeability, absolute
permeability, relative
permeance
permittivity, absolute
permittivity, relative
phase, angle
phase, delay
phase, deviation
phase change
phase-change coefficient
phase velocity
polarisation, electric
polarisation, magnetic
potential
potential difference
power, active
power, apparent
power, reactive
power factor
power factor, sinusoidal
power-level difference
Poynting vector
propagation coefficient
Q (quality) factor
radiant energy
radiation resistance

Symbol
δ
μ_{0}
H

- A / m

B
Ψ
m
$B_{i} J$
X, K
A
$H_{i} M$
F, f_{μ}
μ
m
δ
F, F_{n}
P_{n}
T_{n}
n
m
p
N
T
μ
μ_{r}
\wedge
ε
ε_{r}
Φ rad
$t_{0} \quad$ rad
$\Delta \Phi \quad \mathrm{rad}$
$B \quad \mathrm{rad}$
$\beta \quad \mathrm{rad} / \mathrm{m}$
c_{ϕ}, v_{ϕ}
P
$B_{i} J \quad$ T
V V
$U, V \quad V$
P W
$S \quad V$ A
Q var \dagger
λ
$\cos \Phi$
-
S
V
Q
Q, W
R_{r}

SI Unit

rad
H / m
A/m
Wb
T
Wb
A m ${ }^{2}$
T
Wb / m
A / m
A
$\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$
rad
rad
W
K
m^{-3}
-
-
-
H / m
H, Wb/A
F/m
m / s
$\mathrm{C} / \mathrm{m}^{2}$
T
V

A
-
$\mathrm{Np} \dagger \mathrm{dB} \dagger$
$\mathrm{W} / \mathrm{m}^{2}$
m^{-1}
-
J
Ω
\dagger Not a SI unit but in common use

7. Quantity Symbols for Electrotechnics (continued)

Quantity	Symbol	SI Unit
	S	
rating	X	VA, W
reactance	r, p	Ω
reflection coefficient	n	-
refractive index	ε	$\mathrm{p} . \mathrm{u} . \dagger$
regulation	R, R_{m}	$\mathrm{H}^{-1}, \mathrm{~A} / \mathrm{Wb}$
reluctance	R	Ω
resistance	α	K^{-1}
resistance-temperature coefficient	ρ	$\Omega \mathrm{m}$
resistivity	S	-
signal	S	-
slip	S	-
standing-wave radio	B	S
susceptance	$\mathrm{X}, \mathrm{X}_{\varepsilon}$	-
susceptibility, electric	$\mathrm{X}, \boldsymbol{K}$	-
susceptibility, magnetic	g_{m}	$\mathrm{~A} / \mathrm{V}, \mathrm{S}$
transconductance	H	-
transfer function	T	-
transmission factor	$t_{o n} t_{o f f}$	S
turn-on, turn-off time	U, V	V
voltage	Λ	m
wavelength	Φ	$\mathrm{J} \ddagger$
work function		

[^0]
8. Subscripts and other uses of Letters and Numbers

It is recommended as a guiding principle for the printing of subscripts that, when these are symbols for physical quantities, they should be printed in italic type. Numbers as subscripts should be printed in roman type; mathematical variables (e.g. running subscripts) should be printed in italic type. All other subscripts should be printed in roman type.

Some commonly used abbreviations, often occurring as subscripts, are as follows:

General

[^1]
8. Subscripts and other uses of Letters and Numbers (continued)

m	magnetic	r (cont)	resonance
	magnetising		resulting
	maximum		reverse
	measured		reverse transfer
	mechanical		rotational
	mutual		rotor
	peak value	ref	reference
max	maximum	rms	root mean square value
med	median		
min	mimimum	S	secondary
mod	modulation		segment
n	natural		signal
	noise		spherical
	nominal		standardised
			static
0	output		stator
	spherical characteristic in vacuo		steady issue
OC	open circuit		storage
opt	optical		synchronous
or	original	sat	saturation
ov	overload	SC	short-circuit
		sim	simultaneous
p	parallel, shunt	\sin	sinusodial
	parasitic	stg	storage
	pole, or pairs of poles	suc	successive
	primary		
	psophometric	t	tangential
	pulse		total
pd	pull down		transient
ph	phase		transmission
pk	peak		transverse
pt	punch through	th	thermal
pu	pull up		theoretical
p-p	peak-to-peak	tot	total
q	q-axis	u	usual
	quadrature		useful
	quiescent		
	turn off	v	luminous
			vartying
r	radical		vacuum
	radiation		valley
	rated		
	real	wdg	winding
	relative		
	reflection	X	reactive
	remanent		crosstalk
	residual		

8. Subscripts and other uses of Letters and Numbers (continued)

characteristic free space no load zero frequency	2
full load	
fundamental	
input	
port 1 positive sequence primary	3
	, p

negative sequence
output
port 2
second harmonic
secondary
tertiary
parallel
perpendicular
spherical
at infinity

Semiconductors

To the incremental hybrid (h), admittance (y) and impedance (z) parameters, double subscripts are applied in the order (1) function, (2) common electrode:
(1) i or 11 input; o or 22 output; for 21 forward transfer; r or 12 reverse transfer.
(2) b base; c collector; d drain; e emitter; g gate; s source (e.g. $h_{o e}, y_{12 b}$).

The upper-case variant of the subscript is used for static (d.c.) or large-signal values (e.g. $\mathrm{h}_{\mathrm{FE}}, \mathrm{h}_{21 \mathrm{~F}}$).
The real and imaginary parts of a device impedance are shown, respectively, by Re and $\mathrm{j} \operatorname{Im}\left(\mathrm{e} . g . \mathrm{h}_{\mathrm{ie}}=\operatorname{Re}\left(\mathrm{h}_{\mathrm{ie}}\right)+\mathrm{j} \operatorname{Im}\left(\mathrm{h}_{\mathrm{ie}}\right)\right)$.
Upper-case letters are used for the representation of electrical parameters of external circuits and all inductances and capacitances. Except for L and C, lower-case letters are used for electrical parameters inherent in the device (e.g. r_{e}). In equivalent circuits using 3-terminal devices, a third letter may be used to indicate the condition at the third terminal (e.g. $\mathrm{V}_{\mathrm{CBO}}$ where $\mathrm{I}_{\mathrm{E}}=0$), while the first subscript indicates one terminal of the device and the second subscript the reference terminal or circuit node.

9. Mathematical Symbols

Term

$\checkmark-1$
ratio of circumference to diameter of circle
base of natural logarithms
exponential function (to the base e) of x
logarithm to the base a of x
natural logarithm of x
common logarithm of x
binary logarithm of x
circular functions of x
inverse circular functions of x
hyperbolic functions of x inverse hyperbolic functions of x

sum

product
function f
value of the function f at x
limit to which $f(x)$ tends as x
approaches a
finite increment of x
variation of x
total differential of f
operators $\underline{\partial}, \underline{d}$ $\partial x d x$
differential coefficient of order
n of $f(x)$
partial differential coefficient of order
$f(x, y, \ldots)$ with respect to x, when
y, \ldots are held constant
indefinite integral of $f(x)$ with respect to x
definitive integral of $f(x)$ from
$x=a$ to $x=b$
convolution product of f and g
matrix \boldsymbol{A}
inverse of the square matrix \boldsymbol{A}
transpose matrix of \boldsymbol{A}
complex conjugate matrix of \boldsymbol{A}
determinant of the square matrix \boldsymbol{A}

Symbol
j
$\pi(\approx 3.141592$ 654)
e (≈ 2.718281 828)
$\mathrm{e}^{\mathrm{x}}, \exp x$
$\log _{a} x$
$\ln x\left(\log _{c} x\right)$
$\lg x\left(\log _{10} x\right)$
lb x $\left(\log _{2} x\right)$
$\sin x, \cos x, \tan x$
$\arcsin x, \arccos x, \arctan x$
$\sinh x, \cosh x, \tanh x$
$\operatorname{arsinh} x, \operatorname{arcosh} x, \operatorname{artanh} x$

Σ

\square
f
$f(x)$
$\lim f(x)$
xa
Δx
∂f
$\mathrm{d} f$
D_{x}, D
$\mathrm{dn} f, f^{(n)}(x)$
d x^{n}
$\frac{\partial f}{\partial x}(x, y, \ldots),\binom{\partial f}{\partial x}_{y}, \cdots$
$\int f(x) \mathrm{d} x$
$\int_{a}^{b} f(x) d x$
$f * g$

\boldsymbol{A}^{-1}
$\boldsymbol{A}^{\top}, \tilde{A}$
A*
$\operatorname{det} \boldsymbol{A},\left|\begin{array}{cc}A_{n} \ldots \ldots \ldots . & A_{l n} \\ n & \\ \vdots & \vdots \\ A_{n n} \ldots \ldots \ldots . . & A_{n n}\end{array}\right|$

9. Mathematical Symbols (continued)

Term

Symbol
vector \boldsymbol{A}
magnitude of the vector \boldsymbol{A}
scalar product of \boldsymbol{A} and \boldsymbol{B}
vector product of \boldsymbol{A} and \boldsymbol{B}
del operator
gradient of \varnothing
\boldsymbol{A}, (A also used)
A, \mathbf{A}
$\mathrm{A} \cdot|\mathrm{B}|$
AXB
divergence of \boldsymbol{A}
\varnothing, grad \varnothing
curl of \boldsymbol{A}
Laplacian
D'Alembertian

- $\boldsymbol{A}, \operatorname{div} \boldsymbol{A}$
$\times \boldsymbol{A}, \operatorname{curl} \boldsymbol{A}$
${ }^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
$\square=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{\mathrm{c}^{2}} \cdot \frac{\partial^{2}}{\partial t^{2}}$

Quantity	Symbol	Numerical Value	Unit
acceleration of free fall (standard)	g_{n}	9.806 65*	$\mathrm{m} / \mathrm{s}^{2}$
atmospheric pressure (standard)	p_{0}	$1.01325 \times 10^{5 *}$	Pa
atomic mass constant (unified)	m_{u}	1.660540×10^{-27}	kg
Avogadro constant	N_{A}	6.022137×10^{23}	mol^{-1}
Bohr magneton	μ_{B}	9.274015×10^{-24}	J/T
Boltzmann constant	k	1.380658×10^{-23}	J/K
elementary (proton) charge	e	1.602177×10^{-19}	C
electron: charge	-e	$-1.602177 \times 10^{-19}$	C
electron: rest mass	m_{e}	9.109390×10^{-31}	kg
electron: charge/mass ratio	e / m_{e}	1.758820×10^{11}	C/kg
Faraday constant	F	9.648531×10^{4}	$\mathrm{C} / \mathrm{mol}$
free space: electric constant	ε_{0}	8.854188×10^{-12}	F/m
free space: intrinsic impedance	Z_{0}	376.7303	Ω
free space: magnetic constant	μ_{0}	$4 \pi \times 10^{-7}$	H / m
free space: speed of e.m. waves	c	$2.99792458 \times 10^{8 *}$	m / s
gravitational constant	G	6.67259×10^{-11}	$\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
ideal molar gas constant	R	8.314510	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
neutron rest mass	m_{n}	1.674929×10^{-27}	kg
Planck constant	h	6.626076×10^{-34}	J s
normalised	万	1.054573×10^{-34}	J s
proton: charge	+e	1.602177×10^{-19}	C
proton: rest mass	m_{p}	1.672623×10^{-27}	kg
proton: charge/mass ratio	e / m_{p}	9.578831×10^{7}	C/kg
radiation constants	c_{1}	3.741775×10^{-16}	W m ${ }^{2}$
Stefan-Boltzmann constant unified atomic mass unit (is one twelfth of the mass of the atom of the nuclide 12C) velocity of sound in air (s.t.p.)	c_{2}	1.438769×10^{-2}	m K
	σ	5.67051×10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
		1.660540×10^{-27}	kg
	c	331.45	m / s

[^2]Values of physical constants (apart from speed of sound) derived from CODATA Bulletin No. 63, Nov. 1986.

11. Conversion Factors

Exact values are shown with an asterisk *.
Some of these units may no longer have a legal validity.

Length

$1 \AA$	100.0^{*}	pm
1 mil	25.4^{*}	mm
1 in	25.4^{*}	mm
1 ft	0.3048^{*}	m
1 yd	0.9144^{*}	m
1 mile	1.609344^{*}	km
1 nautical mile	1.852^{*}	km
1 astronomical unit	0.14959787^{*}	Tm
1 light year	9.4603	Pm

Area, Volume

$1 \mathrm{in}^{2}$	645.16^{*}	$\mathrm{~mm}^{2}$
$1 \mathrm{ft}^{2}$	$0.092903 \mathrm{~m}^{*}$	$\mathrm{~m}^{2}$
$1 \mathrm{yd}^{2}$	0.836127	$\mathrm{~m}^{2}$
1 ha	10000.0^{*}	$\mathrm{~m}^{2}$
$1 \mathrm{in}^{3}$	16387.064^{*}	$\mathrm{~mm}^{3}$
1 litre	1.0^{*}	dm^{3}
1 UK fluid ounce	28.41×10^{-6}	$\mathrm{~m}^{3}$
1 UK gal	4.54609	L
1 US gal	3.78541	L
$1 \mathrm{ft}^{3}$	0.0283168	$\mathrm{~m}^{3}$
1 yd	0.764555	$\mathrm{~m}^{3}$
1 mile $(640$ acres $)$	2.58998	$\mathrm{~km}^{2}$
1 are	100.0^{*}	$\mathrm{~m}^{2}$
1 acre $\left(4840 \mathrm{yd}^{2}\right)$	4046.855	$\mathrm{~m}^{2}$

Mass, Density

1 oz (adp)
1 oz (troy)
1 lb
1 tonne
1 (UK) ton
$1 \mathrm{lb} / \mathrm{ft}^{3}$
$1 \mathrm{lb} / \mathrm{in}^{3}$
1 cwt (UK)
1 carat

Velocity

$1 \mathrm{ft} / \mathrm{s}$	0.3048^{*}	$\mathrm{~m} / \mathrm{s}$
1 mile/h	0.44704^{*}	$\mathrm{~m} / \mathrm{s}$
1 knot	0.5144	$\mathrm{~m} / \mathrm{s}$

28.35 g
31.10 g
0.453 592.37* kg

1 000.0* kg
1016.05 kg
$16.0185 \mathrm{~kg} / \mathrm{m}^{3}$
$27.68 \quad \mathrm{Mg} / \mathrm{m}^{3}$
50.8023 kg
0.2* g

Force, Pressure, Torque

1 ozf	278.0	mN
1 lbf	4.44822	N
1 kgf	9.80665^{*}	N
1 Torr	133.322	Pa
1 mm Hg	133.322	Pa
$1 \mathrm{in} \mathrm{H}_{2} \mathrm{O}$	249.09	Pa
$1 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$	9.80665^{*}	kPa
1 bar	100.0^{*}	kPa
$1 \mathrm{lbf} / \mathrm{in}^{2}$	6.89476	kPa
1 ft lbf	1.35582	N m
1 dyne	10.0^{*}	HN
1 standard atmosphere	0.101325^{*}	MPa

Energy, Power

1 eV	0.1602182	aJ
1 cal (international table)	4.1868^{*}	J
$1 \mathrm{Cal}(=1$ kcal thermochemical) \dagger	4.184^{*}	kJ
1 ft lbf	1.35582	J
1 m kgf	9.80665^{*}	J
1 Btu	1.05506	kJ
1 therm	105.506	MJ
1 kW h	3.6^{*}	Mj
$1 \mathrm{ft} \mathrm{lbf} / \mathrm{s}$	1.35582	W
$1 \mathrm{~m} \mathrm{kgf} / \mathrm{s}$	9.80665^{*}	W
$1 \mathrm{Btu} / \mathrm{h}$	0.293071	W
$1 \mathrm{hp}(\mathrm{UK})$	0.7457	kW
$1 \mathrm{erg} / \mathrm{s}$	0.1^{*}	HW

\dagger Widely used for energy content of food. (There are different 'calories', of marginally different sizes; also note that the 'big calorie', used in newspapers etc., is 1000 times the corresponding 'small calorie'.)

Nucleonics, Radiation

Curie	1 Ci	$3.70 \times 10^{10 *}$	Bq
rad	1 rd	0.01^{*}	Gy
Röntgen	1 R	$2.58 \times 10^{-4 *}$	C / kg
barn	1 barn (or 1 b$)$	$10^{-28 *}$	$\mathrm{~m}^{2}$
foot-candle	1 ft cd	10.76	lx

Special remark on logarithmic quantities and units

The expression for the time dependence of a damped harmonic oscillation can be written either in real notation or as the real part of a complex notation
$\mathrm{F}(t)=A \mathrm{e}^{-\partial t} \cos (\omega t)=\operatorname{Re}\left(A \mathrm{e}^{-(\partial+j \omega t)}\right.$

This simple relation involving ∂ and ω can be obtained only when e (base of natural logarithms) is used as the base of the exponential function. The coherent SI unit for the damping coefficient ∂ and the angular frequency ω is second to the power minus one, i.e. $1 / \mathrm{s}$. Using the special names neper, Np, and radian, rad, for the units of ∂t and ωt respectively, the units for ∂ and ω become neper per second, Np/s, and radian per second, rad/s, respectively. Neper and radian are special names for the 'dimensionless' unit one, 1. The neper is used as a unit for logarithmic quantities; the radian is used as a unit for plane angles and for the phase of circular functions.

Corresponding variation in space is treated in the same manner
$F(x)=A e^{-\alpha x} \cos (\beta \square x)=\operatorname{Re}\left(A e^{-v x}\right), \gamma=\alpha \square+j \beta$
where the unit for α is neper per metre, $N p / m$, and the unit for β is radian per metre, $\mathrm{rad} / \mathrm{m}$.
In ISO 31, the level of a field quantity is therefore defined as the natural logarithm of a ratio of two amplitudes, $L_{F}=\ln \left(F / F_{0}\right)$, and is hence a quantity of dimension one. The unit neper (= the number 1) is the level of a field quantity when $F / F_{0}=e$.

Since power is often proportional to the square of an amplitude, a factor $1 / 2$ is introduced in the definition of the level of a power quantity $L_{p}=(1 / 2) \ln \left(P / P_{0}\right)$ in order to make the level of the power quantity under these circumstances equal to the level of the field quantity.

In practice the non-coherent unit degree, $\ldots^{\circ},\left(1^{\circ}=\pi / 180 \mathrm{rad}\right)$ is often used for angles and the non-coherent unit bel, $\mathrm{B},[1 \mathrm{~B}=$ $(1 / 2) \log _{e}{ }^{10} \mathrm{~Np} \approx 1.151293 \mathrm{~Np}$] is based on common logarithms (base 10) for logarithmic quantities. Instead of the bel, its submultiple the decibel, dB , is commonly used.

Some numerical conversion factors are:

power level	1 dB
frequency	1 Np
	1 octave
	1 decade

$0.05 \log _{\mathrm{e}} 10 \mathrm{~Np}(=0.115129 \mathrm{~Np})$
$20 \log _{10}$ e dB $(\approx 8.686 \mathrm{~dB}$
$\log _{10} 2$ decade (≈ 0.301 decade)
$\log _{2} 10$ octave (≈ 3.321 octave)

12. Graphical Symbols

Connections and network elements

cell battery (long + ve)

screen

frame

indicating movement

thermistor \dagger

pre-set

d.c. supply

crossing

fuse
symbol in envelope:
A ammeter
V voltmeter W wattmeter etc.

moving contact

polarised
e.g. electrolytic

general impedance

resistor (1 prefered)

variable (1 prefered)

ideal voltage source \dagger

ideal current source \dagger

tapping

signal

capacitor

oscillator
signal path

Power plant

Transformers:

2-wdg

3-wdg

auto

current or pulse
if desired, core shown by single line annotated to indicate material

Machines:

descriptive symbols in envelope: G (generator), M (motor), \underline{G} d.c., M a.c.

S (synchronous), GS, MS

choke reactor
*
circuit-breaker

isolator

linear M

gap

stepping M

bridge rectifier

wdgs

converter

M starter -/ d.c.
\{ ~/ rectifier \% inverter etc.

Electronic devices

Amplifiers:

general

operational

parametric

integrating

inverting

Diodes:

general

breakdown diode,

photo-diode

light emitting diode

tunnel diode

varactor

Thyristors:

triode thyristor (type unspecified)

triac

reverse blocking n-gate

triode thyristor p-gate

Units \& Symbols for Electrical \& Electronic Engineering

Electronic devices (continued)

Cells:

photo-conductive device

photo-voltaic

Transistors:

(use of the envelope symbol is optional unless there is a connection to it) \dagger with substrate connection brought out

Logic symbols

BS 3939 (1991)

AND element

Or element

EX $\stackrel{C L}{ } O R$

delay element (5 ns)

Schmitt trigger
\dagger Not in BS but in common use

logic negation

RS-bistable
RS

logic polarity

dynamic input

asterisk: indicates no. of addresses and
bits

asterisk:
\sum adder
P-Q subtractor π multiplier ALU arithmetic logic unit

Logic symbols (continued)

shift register

counter

display unit

multiplexer

demultiplexer

Optic fibre symbols

optical fibre optical fibre cable

multimode stepped index optical fibre

single mode stepped index optical fibre
graded index optical fibre

a core diameter b cladding
c first coating d jacketing
optical connection femalemale

permanent joint

optical attenuator

changeover contact in optical fibre circuit
guided light devices

Telecommunication symbols

general symbol for: modulator,
demodulator,
discriminator

fixed loss attenuator

variable loss attenuator

distortion corrector

filter

general symbol for charger
piezo-electric circuit
f_{1} / f_{2} freq. chgr. $f /_{(f / n)}^{2}$ freq. div. $f / n f$ freq. mult. $25 / 2^{7}$ code conv. etc

threshold

balancing network

generator

hybrid transformer

delay line

Microwave devices

process

decision
terminal / interrupt

direct access
storage

on-line
storage
sequential access storage

stored data

control transfer
off-line

internal storage

loop

magnetic disk
storage

13. Some Abbreviations

Commonly used abbreviations in optical, logic and microprocessor circuits

Abbreviation	Description
ACC	accept
ACK	acknowledge
ADR	address
ALU	arthmetic logic unit
BCD	binary code decimel
BCTR	bit counter
BIN	binary
BPS	bits per second
BUF	buffer
BUS	bus
B	byte
CAR	carry
CC	condition code
CE	chip enabled
CLK	clock
CLR	clear
COMP	compare
CP	clock pulse
CR	clock register
CT	count
CTR	counter
CY	cycle
D	data
DEC	decimal
DEL	delay
DIN	data in
DOUT	data out
DR	data register
DRAM	dynamic random access memory
EN	enable
END	end
EPROM	electronic programmable read only memory
ERASE	erase
ERR	error
EXOR	exclusive or
F	function
FF	flip-flop
FIFO	first in - first out
G	gate
GEN	generate
GND	ground
HEX	hexidecimal

Abbreviation	Description
INH	inhibit
INT	interrupt
I/O	input / output
LD	load
LOG 1	logical one
LOG Z	logical zero
LSB	least-significant bit
MAR	memory address register
MM	main memory
MPX	multiplex
MR	memory register
MSB	most significant bit
MUX	multiplexor
$\mu \mathrm{P}$	microprocessor
N	negation
OCT	octal
OP	operation
PAR	parity
PC	program counter
PE	parity error
PU	pull up
RAM	random access memory
REG	register
RES	reset
RO	read out
ROM	read only memory
RUN	run
SET	set
SH	shift
SRAM	static random access memory
START	start
STOP	stop
STR	storage
SYNC	synchronisation
TERM	terminate
TO	to (transfer)
TP	time pulse
TRIG	trigger
WI	write in
WR	write

Abbreviation	Description
AE	aerial
B	battery
BB	busbar
C	capacitor
CB	circuit breaker
CK	clock
CON	contactor
CSR	controlled semicondustor rectifier
D	diode
EQ	equaliser
F	fan
FB	ferrite disc or bead
FC	ferrite core
FL	filter
FS	fuse
FW	field winding
G	generator
H	heater
HC	heat coil
HD	hydrophone
IC	integrated circuit
IREG	induction regulator
ISL	isolator
K	key

Abbreviation Description

L	inductor
LK	link
LP	lamp
LS	loudspeaker
M	motor
ME	meter
MG	motor generator
MIC	microphone
MK	morse key
ML	module
MT	telephone handset
MX	matrix
PCC	photoconductive cell
PEC	photoelectric cell
PL	plug
RE	recording instrument or meter
SD	surge diverter of any type
SE	sealing end
SEM	semaphore indicator
SHW	shunt winding
SRAM	static random access memory
SW	seires winding
TD	transductor
TL	telephone receiver
U	unit
VB	vibrator

14. Letter and Digit Code for R \& C Values

For resistors, R, K, M, G and T are used as multipliers for $1,10^{3}, 10^{6}, 10^{9}$ and 10^{12}, respectively, of resistance values expressed in ohms, whilst for capacitors, $\mathrm{p}, \mathrm{n}, \mu, \mathrm{m}$ and F are used as multipliers for $10^{-12}, 10^{-9}, 10^{-6}, 10^{-3}$ and 1 , respectively, of the capacitance values expressed in farads.

For example:

Resistance values	Coded marking	Capacitance values	Coded marking
0.15Ω	R 15	0.15 pF	p 15
1.5Ω	1 R 5	1.5 pF	1 p 5
15.0	15 R	15.0 pF	15 p
$1.5 \mathrm{k} \Omega$	1 K 5	1.5 nF	1 n 5
$150 \mathrm{k} \Omega$	150 K	150 nF	150 n
$1.5 \mathrm{M} \Omega$	1 M 5	$1.5 \mu \mathrm{~F}$	$1 \mu 5$
$15 \mathrm{M} \Omega$	15 M	$15 \mu \mathrm{~F}$	15μ
$1.5 \mathrm{G} \Omega$	$1 \mathrm{G5}$	1.5 mF	1 m 5
$1.5 \mathrm{~T} \Omega$	1 T 5	15 mF	15 m

Appendix A

List of Standards used in complilation of 'Units \& Symbols'

British Standards Institution (BSI) Publications

BS 3363: 1988	Letter symbols for semiconductor devices and integrated microcircuits
BS 3939: 1992	Graphical symbols for electrical power, telecommunications and electronics diagrams
BS 4058: 1995	Data processing flow chart symbols, rules and conventions
BS 5070: 1991	Engineering diagram drawing practice. Part 4: recommendations for logic diagrams
BS 5555: 1993	SI Units and recommendations for the use of their multiples (ISO 1000: 1992) and of certain other units BS 5775: 1993
	Quantities, units and symbols. Part 5: electricity and (ISO 31: 1992) magnetism. Part 11: mathematical signs and symbols for use in the physical sciences and technology

Note: The information given in the Booklet is in accordance (where relevant) with the Council* Directive on Units of Measurement (1991).
*The Council of the European Communities

Appendix B

Typefaces used
English Alphabet

A	a	A	a
B	b	B	b
C	c	C	c
D	d	D	d
E	e	E	e
F	f	F	f
G	g	G	g
H	h	H	h
I	i	1	i
J	j	J	j
K	k	K	k
L	I	L	/
M	m	M	m
N	n	N	n
0	0	0	0
P	P	P	p
Q	q	Q	q
R	r	R	r
S	s	S	s
T	t	T	t
U	u	U	u
V	v	V	v
W	w	W	w
X	X	X	x
Y	y	Y	y
Z	Z	Z	z

Appendix B

Typefaces used

Greek Alphabet

	Upper case upright	Lower case upright	Upper case sloping	Lower case sloping
alpha	A	α	A	α
beta	B	β	B	β
gamma	Γ	Y	Γ	γ
delta	Δ	δ, δ^{*}	Δ	δ
epsilon	E	ε	E	ε
zeta	Z	ζ	Z	ζ
eta	H	η	H	η
theta	Θ	θ	Θ	θ
iota	I	I	1	1
kappa	K	K	K	K
lambda	\wedge	λ	\wedge	λ
mu	M	μ	M	μ
nu	N	v	N	v
xi	三	ξ	三	ξ
omicron	0	0	0	\bigcirc
pi	\square	T	$П$	π
rho	P	ρ	P	ρ
sigma	Σ	σ	Σ	σ
tau	T	T	T	T
upsilon	Y	u	Y	u
phi	Ф	φ	Ф	φ
chi	X	X	X	X
psi	Ψ	Ψ	ψ	ψ
omega	Ω	ω	Ω	ω

[^3]
IET Offices

London

Savoy Place 2 Savoy Place London
WC2R OBL
United Kingdom
www.savoyplace.co.uk

Stevenage

Michael Faraday House
Six Hills Way
Stevenage Herts
SG1 2AY
United Kingdom
T: +44 (0)1438 313311
F: +44 (0)1438 765526
E: postmaster@theiet.org
www.theiet.org

New Jersey
379 Thornall Street
Edison NJ 08837
USA
T: +1 (732) 3215575
F: +1 (732) 3215702

Beijing

Suite G/10F
China Merchants Tower
No. 118 Jianguo Road
Chaoyang District
Beijing China
100022
T: +86 1065664687
F: +86 1065664647
E: china@theiet.org www.theiet.org.cn

Hong Kong

4412-13 Cosco Tower 183 Queen's Road
Central
Hong Kong
T: +852 25212140
F: +852 27781711

Bangalore

Unit No 405 \& 406
4th Floor, West Wing
Raheja Towers
M. G. Road

Bangalore 560001
India
T: +91 8040892222
E: india@theiet.in
www.theiet.in

IET Venues

IET London: Savoy Place
London
T: +44 (0) 2073445479
www.ietvenues.co.uk/savoyplace

IET Birmingham: Austin Court

Birmingham
T: +44 (0)121 6007500
www.ietvenues.co.uk/austincourt

IET Glasgow: Teacher Building

Glasgow
T: +44 (0)141 5661871
www.ietvenues.co.uk/teacherbuilding

wWw.theiet.org

[^0]: \dagger Not a SI unit but in common use
 \ddagger More usually expressed in eV

[^1]: Units \& Symbols for Electrical \& Electronic Engineering
 © The IET 2016

[^2]: * exact values

[^3]: *Used only for partial differential coefficients

