

# **Units & Symbols** for Electrical & Electronic Engineers



## Preface

A booklet, Symbols and Abbreviations for use in Electrical and Electronic Engineering Courses, was published by the Institution of Electrical Engineers in 1968 and 1971. To take account of the many revisions and additions to British and International Standards since then, a new and fully revised edition was published in 1979, with reprints in 1980 and 1983.

In 1985, the editorial panel reconvened and undertook a total review and update of the Symbols and Abbreviations booklet, prior to it being re-issued under its new title in the professional brief series, in 1986. Further reviews of the contents were undertaken in 1991 and 1996. Any comments on the present content, or suggestions for additional material, will be welcomed. Please address comments to the Secretary of the Institution.

The booklet is for use by students and staff in colleges and universities, as a reference for authors of papers and books on electrical and electronic engineering and related subjects, and as a guide for draughtsmen and designers in industry.

Appendix A lists the standards which have been used in the preparation of this Guide.

### **Contents**

| Int | roduction                                                                                                                                                                                                                                                                                                  | 1                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1.  | Abbreviations for words and phrases                                                                                                                                                                                                                                                                        | 2                                                   |
| 2.  | Printing conventions<br>Letter symbols, subscripts                                                                                                                                                                                                                                                         | <b>3</b><br>3                                       |
| 3.  | Unit symbols<br>Compound symbols                                                                                                                                                                                                                                                                           | <b>4</b><br>4                                       |
| 4.  | Numerical values<br>The decimal sign<br>Multiplication of numbers                                                                                                                                                                                                                                          | <b>5</b><br>55                                      |
| 5.  | The International System of Units<br>SI base units and supplementary units<br>SI derived units<br>Non-SI units                                                                                                                                                                                             | <b>6</b><br>7<br>7                                  |
| 6.  | Quantity symbols for mechanics, thermodynamics, illumination                                                                                                                                                                                                                                               | 8                                                   |
| 7.  | Quantity symbols for electrotechnics                                                                                                                                                                                                                                                                       | 10                                                  |
| 8.  | Subscripts and other uses of letters and numbers<br>General<br>Semiconductors                                                                                                                                                                                                                              | <b>13</b><br>13<br>15                               |
| 9.  | Mathematical symbols                                                                                                                                                                                                                                                                                       | 16                                                  |
| 10  | . Physical constants                                                                                                                                                                                                                                                                                       | 18                                                  |
| 11  | <ul> <li>Conversion factors         Length             Area, Volume             Mass, Density             Velocity             Force, Pressure, Torque             Energy, Power             Nucleonics, Radiation etc.             Special remark on Logarithmic quantities and units         </li> </ul> | <b>19</b><br>19<br>19<br>19<br>20<br>20<br>20       |
| 12  | . Graphical symbols<br>Connections and network elements<br>Power plant<br>Electronic devices<br>Logic symbols<br>Optic fibre symbols<br>Telecommunication symbols<br>Microwave devices<br>Flowchart symbols                                                                                                | <b>22</b><br>23<br>23<br>24<br>25<br>25<br>26<br>26 |
| 13  | <ul> <li>Some abbreviations</li> <li>Commonly used abbreviations in optical, logical and microprocessor circuits</li> <li>Component identification abbreviations</li> </ul>                                                                                                                                | <b>27</b><br>27<br>28                               |
| 14  | . Letter and digit code for R & C values                                                                                                                                                                                                                                                                   | 29                                                  |

#### Appendices

A List of Standards used in compilation of 'Units & Symbols' B Typefaces used: English alphabet, Greek alphabet

**Units & Symbols** for Electrical & Electronic Engineering © The IET 2016 30 31

## Introduction

In the expression I = 16 mA, I is the quantity symbol for the physical phenomenon of electric current, and 16 is its numerical value in terms of the decimal submultiple (10–3) of a unit (ampere) of current; mA is the unit symbol for milliampere. Other symbols (such as j, exp, Cu) are used to indicate mathematical operations, chemical elements etc. Frequently occurring technical phrases are commonly rendered as abbreviations (such as e.m.f., p.d.). In circuit diagrams, graphical symbols identify network components and devices.

International letter symbolism is based on the Roman and Greek alphabets. There are fewer than 90 distinctive capital and small letters to represent some thousands of scientific and technical quantities, and extensive duplication is unavoidable. Priority is given here to electrical, electronic and manufacturing engineering, and quantities in associated fields are, where necessary, assigned alternative or second-choice symbols.

The units and symbols listed throughout this booklet conform to the recommendations of the International Electrotechnical Commission (IEC) and the British Standards Institution (BSI). Additionally, because of their common usage, in the Logic Symbols under Section 12 some distinctive-shape binary logic symbols have been used.

#### **Units & Symbols** for Electrical & Electronic Engineering © The IET 2016

1

## **1. Abbreviations for Words & Phrases**

Well known abbreviations, such as those listed below, are set in small roman (lower-case upright) letters, except for proper names, the unit system (SI), at the start of a sentence (e.g. A.C., not A.c.), and in titles and table headings where preferred:

| Altornating ourrant* |        | Phasa+               | ph     |
|----------------------|--------|----------------------|--------|
| Alternating current  | a.c    | FIIdSEI              | pn.    |
| Direct current*      | d.c.   | Potential difference | p.d.   |
| Electromotive force  | e.m.f. | Power factor         | p.f.   |
| Per unit             | p.u.   | Root mean square     | r.m.s. |

\*Adjective only, as in a.c. motor, d.c. circuit. †As in 3-ph. Supply

Ad hoc abbreviations (such as s.s.b. for single sideband) may be employed subject to an initial use in context of the full expression. Some acronyms (e.g. radar, laser) are used as nouns. The use of capital letters without full points for some abbreviations is common, particularly in the fields of logic, computers and microprocessors (see *Commonly used abbreviations in optical, logical and microprocessor curcuits* in Section 13).

## 2. Printing Conventions

For clarity, in scientific and technical literature, different types of object are printed in different typefaces. The normal printing conventions are as follows:

| Object                          |                       | Typeface                             | Examples              |
|---------------------------------|-----------------------|--------------------------------------|-----------------------|
| unit symbols                    |                       | Roman                                | Hz, s, μm             |
| scalar physical quantities      |                       | Italic                               | f, t                  |
| vestor physical quantities*     | Italio                | boldface or                          | AB                    |
|                                 | Itali                 | c with arrow                         | ĀB                    |
| numbers and numerical constants |                       | Roman                                | 17, π, e              |
| numerical variables             |                       | Italic                               | $x, x_{i}, f(x)$      |
| matricies                       | Ita                   | ic boldface                          | Å                     |
| standard mathematical functions | Roman                 |                                      | sin, log <sub>e</sub> |
| Note: the for                   | ur styles of typeface | e are (using the letter A as an exam | ple):                 |
| Roman (or 'upright'):           | А                     | Roman boldface:                      | Α                     |
| Italic (or 'sloping'):          | A                     | Italic boldface:                     | A                     |

\*this typeface also applies to phasor physical quantities

#### Letter symbols, subscripts

Letter symbols should be used with consistency (e.g. only L for self-inductance, only P for power), but distinguishing subscripts can be attached (e.g.  $L_1$  and  $L_2$ ). Upper-case letters (e.g. V, I) are used for steady, mean and r.m.s values; lower-case letters for instantaneous values which vary with time (e.g. V, i). Maximum, minimum and average are indicated by subscripts (e.g.  $V_{max}$ ,  $V_{min}$ ,  $V_{av}$ ).

## 3. Unit Symbols

Unit symbols are printed in upright roman characters and are used after numerical values (e.g. 10 A, but 'a few amperes'). They are the same in singular and plural, and are not followed by a full point except for normal punctuation, e.g. at the end of a sentence. A space is set between the number and its unit symbol (e.g. 230V, not 230V). The decimal multiples and submultiples given below are prefixed, without a space, to the unit symbols (e.g. 6.6 kV). Compound decimal prefixes should not be used (e.g. pF, not  $\mu\mu$ F).

| 1024            | yotta | Y |                 |       |    | 10-3  | milli | m |
|-----------------|-------|---|-----------------|-------|----|-------|-------|---|
| 1021            | zetta | Z |                 |       |    | 10-6  | micro | μ |
| 1018            | exa   | E | 10 <sup>2</sup> | hecto | h  | 10-9  | nano  | n |
| 1015            | peta  | Р | 10 <sup>1</sup> | deca  | da | 10-12 | pico  | р |
| 1012            | tera  | Т | 10-1            | deci  | d  | 10-15 | femto | f |
| 10 <sup>9</sup> | giga  | G | 10-2            | centi | С  | 10-18 | atto  | а |
| 106             | mega  | М |                 |       |    | 10-21 | zepto | Z |
| 10 <sup>3</sup> | kilo  | k |                 |       |    | 10-24 | yocto | У |

Powers in steps of 3 are preferred, but some others have common usage (e.g. centimetre cm, decibel dB).

#### **Compound symbols**

In a compound unit symbol, multiplication is denoted by either a dot or a space (e.g. N•m, N m). The last form may also be written without a space, provided that special care is taken when the symbol for one of the units is the same as the symbol for a prefix, e.g. mN means millinewton, not metre newton. Unit division may be indicated by a solidus (e.g. V/m). Not more than one solidus should appear in a combination (e.g. 5 m/s2, not 5 m/s/s). In some cases parentheses or negative powers may be used for clarity (e.g. 1/s or s-1; J/(m s K) or J m-1 s-1 K-1).

## **4. Numerical Values**

Numbers should generally be printed in roman (upright) type. To facilitate the reading of numbers with many digits, these may be separated into suitable groups, preferably of three digits, counting from the decimal sign towards the left and the right; the groups should be separated by a small space, and never by a comma or a point, nor by any other means.

#### The decimal sign

The IEC and the BSI indicate that a comma on the line is the preferred decimal sign. In most British Standards, most UK literature, and all USA literature it is the practice to use a dot on the line as the decimal marker. In order to avoid confusion the IEE adopts the convention of English literature publications and uses a dot on the line as the decimal marker.

#### **Multiplication of numbers**

In the UK the preferred sign for the multiplication of numbers is a cross (X); if a dot is used as the decimal sign, the cross must be used. (A dot half-high may be used as the multiplication sign for numbers, but in this case a comma should be used as the decimal sign.)

## 5. The International System of Units

The International System of Units (SI) establishes three kinds of units: base, supplementary, and derived, discussed in the following sub-sections under Section 5. In addition, various other units, listed under the sub-heading Non-SI Units, are recognised for continued use alongside SI units. Many obsolescent non-SI units are listed in Section 11, where conversion factors are given.

#### SI base units and supplementary units

There are seven base units and two supplementary units, as shown below:

| Base quantity                      | Name of SI base unit | Unit symbol |
|------------------------------------|----------------------|-------------|
| length metre m                     | metre                | m           |
| mass kilogram kg                   | kilogram             | kg          |
| time second s                      | second               | S           |
| electric current                   | ampere               | А           |
| thermodynamic temperature kelvin K | kelvin               | K           |
| amount of substance mole mol       | mole                 | mol         |
| luminous intensity candela cd      | candela              | cd          |
|                                    |                      |             |
| plane angle radian rad             | radian               | rad         |
| solid angle steradian sr           | steradian            | Sr          |

The definitions of these units are as follows:

- **metre** (m): the metre is the length of the path travelled in vacuum by light during (1/299 792 458) second.
- **kilogram** (kg): the mass of the international prototype of the kilogram.
- **second** (s): the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
- ampere (A): that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10<sup>-7</sup> newton per metre of length.
- **kelvin** (K): the unit of thermodynamic temperature is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water (but see footnote\*).
- candela (cd): the luminous intensity, in a given direction, of a source which emits monochromatic radiation with a frequency 540 x 10<sup>12</sup> hertz and whose energy intensity in that direction is (1/683) watt per steradian.
- mole (mol): the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
- radian (rad): the plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius.
- steradian (sr): the solid angle which, having its apex at the centre of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere.

The supplementary units 'radian' and 'steradian' are to be regarded as dimensionless derived units which may be used or omitted in the expressions for derived units.

\* In addition to the thermodynamic temperature (symbol 7), expressed in kelvins, use is also made of Celsius temperature (symbol *t*) defined by the equation  $t = 7 - T_o$  where  $T_o = 273.15$  K by definition. The unit 'degree Celsius' is equal to the unit 'kelvin', but 'degree Celsius' is a special name in place of 'kelvin' for expressing Celsius temperature. A temperature interval or a Celsius temperature difference can be expressed in degrees Celsius as well as kelvins, but kelvin is to be preferred.

## **Units & Symbols** for Electrical & Electronic Engineering

(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

#### SI derived units

The units of all physical quantities are derived from the base and supplementary SI units, and certain of them have been named. These, together with some common compound units, are given here:

| Quantity                     | Unit Name                | Unit Symbol                       | Expression in terms of<br>SI base unit                         |
|------------------------------|--------------------------|-----------------------------------|----------------------------------------------------------------|
| force                        | newton                   | Ν                                 | m kg s⁻²                                                       |
| energy                       | joule                    | J                                 | $m^2 kg s^{-2}$                                                |
| power                        | watt                     | W                                 | $m^2 kg s^{-3}$                                                |
| pressure, stress             | pascal                   | Ра                                | m <sup>-1</sup> kg s <sup>-2</sup>                             |
| electric potential           | volt                     | V                                 | m <sup>2</sup> kg s <sup>-3</sup> A <sup>-1</sup>              |
| electric charge              | coulomb                  | С                                 | s A                                                            |
| electric flux                | coulomb                  | С                                 | s A                                                            |
| magentic flux                | weber                    | Wb                                | m <sup>2</sup> kg s <sup>-2</sup> A <sup>-1</sup>              |
| magnetic flux density        | tesla                    | Т                                 | kg s <sup>-2</sup> A <sup>-1</sup>                             |
| electric resistance          | ohm                      | Ω                                 | m <sup>2</sup> kg s <sup>-3</sup> A <sup>-2</sup>              |
| electric conductance         | siemens                  | S                                 | $m^{-2} kg^{-1} s^3 A^2$                                       |
| capacitance                  | farad                    | F                                 | m <sup>-2</sup> kg <sup>-1</sup> s <sup>4</sup> A <sup>2</sup> |
| inductance                   | henry                    | Н                                 | m <sup>2</sup> kg s <sup>-2</sup> A <sup>-2</sup>              |
| Celsius temperature*         | degree Celsius           | oC                                | К                                                              |
| frequency                    | hertz                    | Hz                                | S <sup>-1</sup>                                                |
| luminous flux                | lumen                    | Im                                | cd sr                                                          |
| activity (of a radionuclide) | becquerel                | Bq                                | S <sup>-1</sup>                                                |
| absorbed dose                | grey                     | Gy (=J/Kg)                        | m <sup>2</sup> s <sup>-2</sup>                                 |
| dose equivalent              | sievert                  | Sv (=J/Kg)                        | m <sup>2</sup> s <sup>-2</sup>                                 |
| mass density                 | kilogram per cubic metre | kg/m <sup>3</sup>                 | m <sup>-3</sup> kg                                             |
| moment of force              | newton metre             | Ňm                                | $m^2 \text{ kg s}^{-2}$                                        |
| torque                       | mewton metre             | Nm                                | $m^2 \text{ kg s}^{-2}$                                        |
| electric field strength      | volt per metre           | V/m                               | m kg s <sup>-3</sup> A <sup>-1</sup>                           |
| electrical displacement      | coulomb per square metre | C/m <sup>2</sup>                  | m <sup>-2</sup> s A                                            |
| magnetic field strength      | ampere per metre         | V/m                               | m-1 A                                                          |
| thermal conductivity         | watt per metre kelvin    | W m <sup>-1</sup> K <sup>-1</sup> | m kg s <sup>-3</sup> K <sup>-1</sup>                           |
| luminance                    | candala per square metre | cd/m <sup>2</sup>                 | m <sup>-2</sup> cd                                             |

\*See footnote to previous sub-section - SI base units and supplementary units

#### **Non-SI units**

Some commonly used units not within the SI range are:

| degree $(1^{\circ} = \prod/180 \text{ rad})$ ; minute $(1' = (1/60)^{\circ})$<br>second $(1'' = (1/60)')$ ; revolution $(1 \text{ r} = 2\prod \text{rad})$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| calorie (cal); electronvolt (eV); watt-hour (W h)                                                                                                          |
| ångström (Å)                                                                                                                                               |
| ton (ton); tonne (= metric ton) (t)                                                                                                                        |
| unified atomic mass unit (u)                                                                                                                               |
| atmosphere (atm); bar (bar); torr (Torr)                                                                                                                   |
| revolution per minute (r/min)*, revolution per second (r/s)*                                                                                               |
| minute (min); hour (h); day (d); year (a)                                                                                                                  |
| litre (L, I or litre)                                                                                                                                      |
|                                                                                                                                                            |

\*These are widely used for rotational frequency in specifications of rotating machinery.

### 6. Quantity Symbols for Mechanics, Thermodynamics, Illumination

As noted in Section 2, an italic typeface is used for quantity symbols.

| Quantity                                     | Symbol                                             | SI Unit              |
|----------------------------------------------|----------------------------------------------------|----------------------|
| acceleration, angular                        | α                                                  | rad/s <sup>2</sup>   |
| acceleration, linear                         | a                                                  | m/s <sup>2</sup>     |
| acoustic pressure                            | 0                                                  | Pa                   |
| angle plane                                  | a B v                                              | rad                  |
| angle solid                                  |                                                    | sr                   |
| angular momentum                             |                                                    | $k\sigma m^2 s^{-1}$ |
| area surface area                            |                                                    | $m^2$                |
| hulk compressibility                         | K                                                  | m²/N                 |
| coefficient of heat transfer                 | a                                                  | $W m^{-2} K^{-1}$    |
| density                                      |                                                    | ka/m <sup>3</sup>    |
| officionev                                   |                                                    | Kg/III               |
|                                              |                                                    | -                    |
|                                              |                                                    | J                    |
| energy, kinetic                              |                                                    | J                    |
| energy, polential                            |                                                    | J<br>L/m³            |
| entrelay, volume density                     |                                                    | J/III°               |
| entrapy                                      | A (= U = pV)                                       | J                    |
| entropy                                      | 5                                                  | J/K                  |
| torce                                        | F                                                  |                      |
| frequency                                    | T                                                  | HZ                   |
| frequency, angular                           | ω                                                  | rad/s                |
| Triction, coefficient                        | μ                                                  |                      |
| triction, force coefficient                  | F                                                  | N S/M                |
| Citize for the coefficient                   |                                                    | in m s/rad           |
| GIDDS function                               | G (= U + pV - 1S)                                  | J                    |
| heat, quantity of heat                       | Q                                                  | J                    |
| heat, heat capacity                          |                                                    | J/K                  |
| heat, specific heat capacity                 | C                                                  | J kg-1 K-1           |
| heat, flow rate                              | $\phi_{_{t\!t\!/}}$                                | W                    |
| heat, density of heat flow rate              | q                                                  | W/m²                 |
| Helmholtz free energy                        | A, F (A=U-1S)                                      | J                    |
| illumunance                                  | E                                                  | Lx                   |
| internal energy                              | U                                                  | J                    |
| isentropic exponent                          | $K = V \left(\frac{\partial p}{\partial p}\right)$ | -                    |
|                                              | p ( dV)s                                           |                      |
| kinematic viscosity                          | V                                                  | m²/s                 |
| length                                       | /                                                  | m                    |
| luminance                                    | L                                                  | cd/m <sup>2</sup>    |
| luminous flux                                | φ                                                  | lm                   |
| luminous intensity                           | /                                                  | cd                   |
| mass                                         | т                                                  | kg                   |
| mass flow rate                               | am                                                 | kg/s                 |
| mechanical impedance                         | Z                                                  | N s/m                |
| moduli, modulus of elasticity (Young)        | E                                                  | Pa                   |
| moduli. longitudinal modulus of elasticity   | Ē                                                  | N/m <sup>2</sup>     |
| moduli, sheer modulus, modulus of rigidity   | G                                                  | N/m <sup>2</sup>     |
| moduli, bulk modulus, modulus of compression | -<br>K                                             | N/m <sup>2</sup>     |
| moment of force                              | M                                                  | N m                  |
| moment of inertia                            | <br>J                                              | kg m <sup>2</sup>    |
|                                              | -                                                  |                      |

# 6. Quantity Symbols for Mechanics, Thermodynamics, Illumination (continued)

| Quantity                                  | Symbol           | SI Unit                           |
|-------------------------------------------|------------------|-----------------------------------|
| momentum                                  | n                | ka m/s                            |
| Poisson ratio                             | р<br>И           | -                                 |
| pressure, stress                          | μ<br>D           | Ра                                |
| radius of gyration                        | r<br>k           | m                                 |
| ratio of specific heat capacities         | Y (=c_/c_)       | -                                 |
| second axial moment of force              |                  | m <sup>4</sup>                    |
| second polar moment of area               |                  | m <sup>4</sup>                    |
| specific heat capacity, constant pressure |                  | -                                 |
| specific heat capacity, constant volume   |                  | -                                 |
| specific heat capacity, staturation       | C <sub>sat</sub> | -                                 |
| strain, linear                            | ε                | -                                 |
| strain, sheer                             | Y                | -                                 |
| strain, volume strain, bulk strain        | Θ                | -                                 |
| surface tension                           | Y                | N/m                               |
| temperature, thermodynamic temperature    | Τ, Θ             | К                                 |
| temperature, Celsius temperature          | <i>t,</i>        | oC                                |
| temperature interval                      | -                | К                                 |
| thermal, conductivity                     | λ, k             | w m <sup>-1</sup> K <sup>-1</sup> |
| thermal, resistance                       | R <sub>th</sub>  | K/W                               |
| time                                      | t                | S                                 |
| time constant                             | Т                | S                                 |
| torque                                    | T                | Nm                                |
| velocity, angular                         | ω                | rad/s                             |
| velocity, linear                          | V                | m/s                               |
| viscosity                                 | η                | Pas                               |
| viscosity, kimematic                      |                  | m²/s                              |
| volume                                    | V                | m <sup>3</sup>                    |
| volume, specific                          | V                | m <sup>3</sup> /kg                |
| volume, flow rate                         | $g_{v}$          | m <sup>3</sup> /s                 |
| weight                                    | G                | N                                 |
| work                                      | W                | J                                 |

### 7. Quantity Symbols for Electrotechnics

| Quantity                   | Symbol                            | SI Unit            |  |
|----------------------------|-----------------------------------|--------------------|--|
| admittance                 | Y                                 | S                  |  |
| attenuation                | A                                 | Not dBt            |  |
| attenuation coefficient    | α                                 | m-1                |  |
| bandwidth                  | B                                 | Hz                 |  |
| capacitance                | C                                 | F                  |  |
| charge                     | 0                                 | Ċ                  |  |
| charge density surface     | σ                                 | C/m <sup>2</sup>   |  |
| charge density volume      | 0                                 | C/m <sup>3</sup>   |  |
| conductance                | e<br>G                            | S                  |  |
| conductance mutual         | g                                 | S                  |  |
| conductivity               | Ϋ́α                               | S/m                |  |
| control angle rectifier    | n, 0                              | rad                |  |
| control angle inverter     | ß                                 | rad                |  |
| coupling factor            | P<br>k                            | -                  |  |
| current                    |                                   | Δ                  |  |
| current density area       | 1                                 | $\Delta/m^2$       |  |
| current density, linear    | Δ                                 | Δ/m                |  |
| current linkage            | A                                 | Δ                  |  |
| damning coefficient        | 5                                 | $s^{-1}$ (or Np/s) |  |
| decrement logarithmic      | ۵<br>ا                            | -                  |  |
| dipole moment electric     | 7                                 | C m                |  |
| dipole moment, magnetic    | ρ<br>i                            | When               |  |
| dissination factor         | J<br>d                            | WD III             |  |
| distortion factor          | d                                 | -                  |  |
| alactric constant          | C C                               | -<br>E/m           |  |
| electric constant          | c<br>F                            | 1/11<br>\//m       |  |
| electric field, strength   |                                   | V/111<br>No++      |  |
| electric flux              |                                   |                    |  |
| electric flux density      | <b>φ</b>                          | $C/m^2$            |  |
| electric nux defisity      |                                   | C/m <sup>2</sup>   |  |
|                            | Г<br>У У                          | C/111-             |  |
|                            | $X_{\ell} X_{\varepsilon}$        | -                  |  |
|                            |                                   | V                  |  |
| energy                     | <i>L</i> , <i>VV</i> <sub>e</sub> | J<br>1+            |  |
| foodbook footor            | 3                                 | J+                 |  |
| frequency                  | β<br>_                            | -<br>Ц-            |  |
| frequency                  | J                                 |                    |  |
| frequency, angular         | $\omega$                          |                    |  |
| frequency, deviation       | $\Delta f$                        |                    |  |
| requericy, complex angular | $\rho$                            | 5-                 |  |
| galli<br>group volocity    | G                                 | -                  |  |
| group velocity             | $C_{g'} V_{g}$                    | 11//5              |  |
|                            |                                   | S                  |  |
|                            | $R_{h'}, A_{h}$                   |                    |  |
|                            | Ζ                                 |                    |  |
|                            | $\frac{Z_{o}}{Z}$                 |                    |  |
| inductorse safe            | $\sum_{i}$                        |                    |  |
|                            |                                   | H                  |  |
| leakage factor             | $L_{jk'}$ , IVI<br>$\sigma$       | H<br>-             |  |

† Not a SI unit but in common use—also see section 11 sub section **Special remark on Logarithmic quantities and units** †† Not a SI unit but in common use

‡ More usually expressed in eV

### 7. Quantity Symbols for Electrotechnics (continued)

| Quantity                             | Symbol                  | SI Unit             |
|--------------------------------------|-------------------------|---------------------|
| loss angle                           | δ                       | rad                 |
| magnetic constant                    |                         | H/m                 |
| magnetic field strength              | н<br>Н                  | A/m                 |
| magnetic flux                        | Φ                       | Wh                  |
| magnetic flux density                | ÷<br>B                  | Т                   |
| magnetic flux linkage                | Ψ                       | Wb                  |
| magnetic (area) moment               | m                       | A m <sup>2</sup>    |
| magnetic polarisation                | B.I                     | Т                   |
| magnetic susceptibility              |                         | _                   |
| magnetic vector potential            | Δ                       | Wh/m                |
| magnetication                        |                         | Δ/m                 |
| magnetisation<br>magnetomotive force | F f                     | Λ                   |
| mobility                             | <i>ι</i> , <sub>μ</sub> | $m^2 V^{-1} c^{-1}$ |
| modulation factor (a m )             | μ<br>                   | III V 5             |
| modulation factor (f m )             |                         | -<br>rad            |
| noise factor                         |                         | Tau                 |
|                                      |                         | -                   |
| noise tomporature                    |                         |                     |
|                                      |                         | N                   |
| number density of particles          | n                       | III 3               |
| number of phases                     | m                       | -                   |
| number of pole pairs, pulses         | p                       | -                   |
| number of turns                      | N                       | -                   |
| period                               | Ι                       | S                   |
| permeability, absolute               | μ                       | H/m                 |
| permeability, relative               | μ <sub>r</sub>          | -                   |
| permeance                            | Λ                       | H, Wb/A             |
| permittivity, absolute               | 3                       | F/m                 |
| permittivity, relative               | ε <sub>r</sub>          | -                   |
| phase, angle                         | $\phi$                  | rad                 |
| phase, delay                         | t <sub>o</sub>          | rad                 |
| phase, deviation                     | $\Delta \Phi$           | rad                 |
| phase change                         | В                       | rad                 |
| phase-change coefficient             | β                       | rad/m               |
| phase velocity                       | $C_{\phi}, V_{\phi}$    | m/s                 |
| polarisation, electric               | P                       | C/m <sup>2</sup>    |
| polarisation, magnetic               | $B_i J$                 | Т                   |
| potential                            | V                       | V                   |
| potential difference                 | U, V                    | V                   |
| power, active                        | Р                       | W                   |
| power, apparent                      | S                       | VA                  |
| power, reactive                      | Q                       | var†                |
| power factor                         | λ                       | -                   |
| power factor, sinusoidal             | $\cos \Phi$             | -                   |
| power-level difference               | -                       | Np†, dB†            |
| Poynting vector                      | S                       | Ŵ/m²                |
| propagation coefficient              | V                       | m <sup>-1</sup>     |
| Q (quality) factor                   | Q                       | -                   |
| radiant energy                       | Q, W                    | J                   |
| radiation resistance                 | R <sub>r</sub>          | Ω                   |

† Not a SI unit but in common use

### 7. Quantity Symbols for Electrotechnics (continued)

| Quantity                           | Symbol                          | SI Unit                |
|------------------------------------|---------------------------------|------------------------|
| rating                             | S                               |                        |
| raung                              | 5<br>V                          |                        |
| reactance                          | λ                               | 12                     |
| reflection coefficient             | r, p                            | -                      |
| refractive index                   | n                               | -                      |
| regulation                         | 3                               | p.u.†                  |
| reluctance                         | R, R <sub>m</sub>               | H <sup>-1</sup> , A/Wb |
| resistance                         | R                               | Ω                      |
| resistance-temperature coefficient | α                               | K-1                    |
| resistivity                        | ρ                               | Ωm                     |
| signal                             | S                               | -                      |
| slip                               | S                               | -                      |
| standing-wave radio                | S                               | -                      |
| susceptance                        | В                               | S                      |
| susceptibility, electric           | $\chi_{\prime} \chi_{\epsilon}$ | -                      |
| susceptibility, magnetic           | χ, κ                            | -                      |
| transconductance                   | $g_m$                           | A/V, S                 |
| transfer function                  | Ĥ                               | -                      |
| transmission factor                | т                               | -                      |
| turn-on, turn-off time             | $t_{aa} t_{aff}$                | S                      |
| voltage                            | Ü, V                            | V                      |
| wavelength                         | λ                               | m                      |
| work function                      | Φ                               | J ‡                    |

† Not a SI unit but in common use

‡ More usually expressed in eV

## 8. Subscripts and other uses of Letters and Numbers

It is recommended as a guiding principle for the printing of subscripts that, when these are symbols for physical quantities, they should be printed in italic type. Numbers as subscripts should be printed in roman type; mathematical variables (e.g. running subscripts) should be printed in italic type. All other subscripts should be printed in roman type.

Some commonly used abbreviations, often occurring as subscripts, are as follows:

#### General

| а    | absolute       | exp | experimental         |
|------|----------------|-----|----------------------|
|      | active         | f   | field                |
|      | additional     |     | final                |
|      | ambiont        |     | forward              |
|      | anode          |     | frequency            |
|      | anti reconanco | fl  | floating             |
|      | axial          | 11  | noating              |
| amb  | ambient        | ø   | airgan               |
| anno | asynchronous   | Б   | gate                 |
| av   | average        |     | grid                 |
| av   | average        |     | group                |
| b    | backward       |     | 0.001                |
|      | base           | h   | hysteresis           |
| br   | breakdown      |     | height, depth        |
|      |                |     | hybrid               |
| С    | calculated     |     |                      |
|      | carrier        | i   | ideal                |
|      | case           |     | image                |
|      | coercive       |     | induced              |
|      | collector      |     | initial              |
|      | correction     |     | input                |
|      | critical       |     | instantaneous        |
|      | cut-off        |     | intermediate         |
| ch   | chemical       |     | internal             |
| ср   | composite      |     | intrinsic            |
| Cr   | critical       | im  | image                |
|      |                | in  | insertion            |
| d    | d-axis         | ind | indirect             |
|      | damped         |     |                      |
|      | delay          | j   | junction             |
|      | deviation      |     |                      |
|      | diameter       | k   | cathode              |
|      | difference     |     | knee                 |
|      | diffuse        |     | iterative            |
|      | direct         |     | short circuit        |
|      | dissipation    | K   | transformation ratio |
|      | distortion     |     |                      |
|      | dynamic        | I   | leakage              |
| dem  | demodulation   |     | limiting             |
|      |                |     | line                 |
| е    | effective      |     | local                |
|      | electric       |     | longitudinal         |
|      | emitter        | L   | load                 |
|      | equivalent     |     | large signal         |
|      | error          |     |                      |
|      | external       |     |                      |

## 8. Subscripts and other uses of Letters and Numbers (continued)

| m   | magnetic                          | r (cont) | resonance              |
|-----|-----------------------------------|----------|------------------------|
|     | magnetising                       |          | resulting              |
|     | maximum                           |          | reverse                |
|     | measured                          |          | reverse transfer       |
|     | mechanical                        |          | rotational             |
|     | mutual                            |          | rotor                  |
|     | neak value                        | ref      | reference              |
| may | maximum                           | rms      | root mean square value |
| mod | madian                            | 11115    | Tool mean square value |
| min | mimimum                           | 0        | accordon.              |
|     |                                   | 5        | secondary              |
| moa | modulation                        |          | segment                |
|     |                                   |          | series                 |
| n   | natural                           |          | signal                 |
|     | noise                             |          | spherical              |
|     | nominal                           |          | standardised           |
|     |                                   |          | static                 |
| 0   | output                            |          | stator                 |
|     | spherical characteristic in vacuo |          | steady issue           |
| OC  | open circuit                      |          | storage                |
| opt | optical                           |          | synchronous            |
| or  | original                          | sat      | saturation             |
| OV  | overload                          | SC       | short-circuit          |
| 0.  |                                   | sim      | simultaneous           |
| n   | narallel shunt                    | sin      | sinusodial             |
| Ρ   | parasitic                         | sta      | storage                |
|     | pole or pairs of poles            | SUC      | successive             |
|     | pole, or pairs or poles           | SUC      | Successive             |
|     | printary                          | +        | tangantial             |
|     | psophometric                      | l        | langentian             |
|     |                                   |          | lolai                  |
| pa  | pull down                         |          | transient              |
| ph  | phase                             |          | transmission           |
| pk  | peak                              |          | transverse             |
| pt  | punch through                     | th       | thermal                |
| pu  | pull up                           |          | theoretical            |
| p-p | peak-to-peak                      | tot      | total                  |
|     |                                   |          |                        |
| q   | q-axis                            | u        | usual                  |
|     | quadrature                        |          | useful                 |
|     | quiescent                         |          |                        |
|     | turn off                          | V        | luminous               |
|     |                                   |          | vartying               |
| r   | radical                           |          | vacuum                 |
|     | radiation                         |          | valley                 |
|     | rated                             |          |                        |
|     | real                              | wdg      | winding                |
|     | relative                          | -        | -                      |
|     | reflection                        | Х        | reactive               |
|     | remanent                          |          | crosstalk              |
|     | residual                          |          |                        |

### 8. Subscripts and other uses of Letters and Numbers (continued)

| 0 | characteristic    | 2    | negative sequence |
|---|-------------------|------|-------------------|
|   | free space        |      | output            |
|   | no load           |      | port 2            |
|   | zero frequency    |      | second harmonic   |
|   |                   |      | secondary         |
| 1 | full load         |      |                   |
|   | fundamental       | 3    | tertiary          |
|   | input             |      |                   |
|   | port 1            | , p  | parallel          |
|   | positive sequence | , n  | perpendicular     |
|   | primary           | 0, s | spherical         |
|   |                   | ~    | at infinity       |

#### Semiconductors

To the incremental hybrid (h), admittance (y) and impedance (z) parameters, double subscripts are applied in the order (1) function, (2) common electrode:

(1) i or 11 input; o or 22 output; f or 21 forward transfer; r or 12 reverse transfer.

(2) b base; c collector; d drain; e emitter; g gate; s source (e.g.  $h_{oe}$ ,  $y_{12b}$ ).

The upper-case variant of the subscript is used for static (d.c.) or large-signal values (e.g.  $h_{FE}$ ,  $h_{21F}$ ).

The real and imaginary parts of a device impedance are shown, respectively, by Re and j Im (e.g.  $h_{ie} = \text{Re}(h_{ie}) + j \text{ Im}(h_{ie})$ ).

Upper-case letters are used for the representation of electrical parameters of external circuits and all inductances and capacitances. Except for L and C, lower-case letters are used for electrical parameters inherent in the device (e.g.  $r_e$ ). In equivalent circuits using 3-terminal devices, a third letter may be used to indicate the condition at the third terminal (e.g.  $V_{CBO}$  where  $I_E = 0$ ), while the first subscript indicates one terminal of the device and the second subscript the reference terminal or circuit node.

## 9. Mathematical Symbols

| Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Symbol                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sqrt{-1}$<br>ratio of circumference to diameter of circle<br>base of natural logarithms<br>exponential function (to the base e) of <i>x</i><br>logarithm to the base <i>a</i> of <i>x</i><br>natural logarithm of <i>x</i><br>common logarithm of <i>x</i><br>binary logarithm of <i>x</i>                                                                                                                                                                                      | j<br>π(≈3.141 592 654)<br>e (≈2.718 281 828)<br>$e^x$ , exp x<br>$\log_a x$<br>ln x ( $\log_c x$ )<br>lg x ( $\log_1 x$ )<br>lb x ( $\log_2 x$ )                                                                                                               |
| circular functions of $x$<br>inverse circular functions of $x$<br>hyperbolic functions of $x$<br>inverse hyperbolic functions of $x$                                                                                                                                                                                                                                                                                                                                              | sin x, cos x, tan x<br>arcsin x, arccos x, arctan x<br>sinh x, cosh x, tanh x<br>arsinh x, arcosh x, artanh x                                                                                                                                                  |
| sum<br>product<br>function $f$<br>value of the function $f$ at $x$<br>limit to which $f(x)$ tends as $x$<br>approaches a<br>finite increment of $x$<br>variation of $x$<br>total differential of $f$<br>operators $\frac{\partial}{\partial x} \frac{d}{dx}$<br>differential coefficient of order<br>n of $f(x)$<br>partial differential coefficient of order<br>f(x, y,) with respect to $x$ , when<br>y, are held constant<br>indefinite integral of $f(x)$ with respect to $x$ | $\sum_{\substack{f \\ f(x) \\ \lim f(x) \\ x \neq a}} f(x)$ $\sum_{\substack{x \neq a \\ \partial f \\ \partial f \\ D_x, D}$ $\frac{dnf}{df}, f^{(n)}(x)$ $\frac{dnf}{\partial x}, f^{(n)}(x)$ $\frac{df}{\partial x} \int_{y, \dots} f(x) dx$ $\int f(x) dx$ |
| definitive integral of $f(x)$ from<br>x = a to $x = bconvolution product of f and gmatrix A$                                                                                                                                                                                                                                                                                                                                                                                      | $\int_{a}^{b} f(x) dx$ $f^{*}g$ $\begin{pmatrix} A_{11}, \dots, A_{ln} \\ \vdots & \vdots \\ A & A \end{pmatrix}$                                                                                                                                              |
| inverse of the square matrix <b>A</b><br>transpose matrix of <b>A</b><br>complex conjugate matrix of <b>A</b><br>determinant of the square matrix <b>A</b>                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} A^{\text{H}} \\ A^{\text{T}}, \tilde{A} \\ A^{\text{T}}, \tilde{A} \\ A^{\text{T}} \\ det A, \begin{vmatrix} A_{n}, \dots, A_{ln} \\ \vdots \\ \vdots \\ A_{n'}, \dots, A_{nn} \end{vmatrix} $                                              |

#### **Units & Symbols** for Electrical & Electronic Engineering © The IET 2016

(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

## 9. Mathematical Symbols (continued)

| Term                                    | Symbol                                                                                                                                                       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vector <b>A</b>                         | <b>A</b> . (A also used)                                                                                                                                     |
| magnitude of the vector <b>A</b>        | A, A                                                                                                                                                         |
| scalar product of <b>A</b> and <b>B</b> | A • B                                                                                                                                                        |
| vector product of <b>A</b> and <b>B</b> | A x B                                                                                                                                                        |
| del operator                            |                                                                                                                                                              |
| gradient of ø                           | ø, grad ø                                                                                                                                                    |
| divergence of A                         | • <b>A</b> , div <b>A</b>                                                                                                                                    |
| curl of <b>A</b>                        | x <b>A</b> , curl <b>A</b>                                                                                                                                   |
| Laplacian                               | $2^{2} = \partial^{2} + \partial^{2} + \partial^{2}$                                                                                                         |
|                                         | $\overline{\partial} x^2 \overline{\partial} y^2 \overline{\partial} z^2$                                                                                    |
| D'Alembertian                           | $\Box = \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial t^2} - \frac{1}{2} + \frac{\partial^2}{\partial t^2}$ |
|                                         | $\overline{\partial x^2} + \overline{\partial y^2} + \overline{\partial z^2} - \overline{c^2} + \overline{\partial t^2}$                                     |

## **10.** Physical Constants

| Quantity                                    | Symbol                | Numerical Value                 | Unit                                |
|---------------------------------------------|-----------------------|---------------------------------|-------------------------------------|
| acceleration of free fall (standard)        | g                     | 9.806 65*                       | m/s <sup>2</sup>                    |
| atmospheric pressure (standard)             | о <sub>п</sub><br>D   | 1.013 25 x 10 <sup>5</sup> *    | Pa                                  |
| atomic mass constant (unified)              | m<br>m                | $1.660540 \times 10^{-27}$      | kg                                  |
| Avogadro constant                           | N.                    | $6.022\ 137\ \times\ 10^{23}$   | mol <sup>-1</sup>                   |
| Rohr magneton                               |                       | 9 274 015 x 10 <sup>-24</sup>   | 1/T                                 |
| Boltzmann constant                          | k<br>k                | $1.380658 \times 10^{-23}$      | J/K                                 |
| elementary (proton) charge                  | e                     | 1.602 177 x 10 <sup>-19</sup>   | C                                   |
| electron: charge                            | -е                    | -1.602 177 x 10 <sup>-19</sup>  | C                                   |
| electron: rest mass                         | m                     | 9.109 390 x 10 <sup>-31</sup>   | kg                                  |
| electron: charge/mass ratio                 | e/m                   | 1.758 820 x 10 <sup>11</sup>    | C/kg                                |
| Faraday constant                            | F                     | 9.648 531 x 10⁴                 | C/mol                               |
| free space: electric constant               | ε.                    | 8.854 188 x 10 <sup>-12</sup>   | F/m                                 |
| free space: intrinsic impedance             | Ž                     | 376.730 3                       | Ω                                   |
| free space: magnetic constant               | μ <sub>e</sub>        | 4π x 10 <sup>-7</sup>           | H/m                                 |
| free space: speed of e.m. waves             | C                     | 2.997 924 58 x 10 <sup>8*</sup> | m/s                                 |
| gravitational constant                      | G                     | 6.672 59 x 10 <sup>-11</sup>    | N m <sup>2</sup> kg <sup>-2</sup>   |
| ideal molar gas constant                    | R                     | 8.314 510                       | J mol <sup>-1</sup> K <sup>-1</sup> |
| neutron rest mass                           | m_                    | 1.674 929 x 10 <sup>-27</sup>   | kg                                  |
| Planck constant                             | h″                    | 6.626 076 x 10 <sup>-34</sup>   | Js                                  |
| normalised                                  | ħ                     | 1.054 573 x 10 <sup>-34</sup>   | Js                                  |
| proton: charge                              | <i>+e</i>             | 1.602 177 x 10 <sup>-19</sup>   | С                                   |
| proton: rest mass                           | m_                    | 1.672 623 x 10 <sup>-27</sup>   | kg                                  |
| proton: charge/mass ratio                   | e/m_                  | 9.578 831 x 10 <sup>7</sup>     | C/kg                                |
| radiation constants                         | C, <sup>p</sup>       | 3.741 775 x 10 <sup>-16</sup>   | W m <sup>2</sup>                    |
|                                             | <i>C</i> <sub>2</sub> | 1.438 769 x 10 <sup>-2</sup>    | m K                                 |
| Stefan-Boltzmann constant                   | σ                     | 5.670 51 x 10 <sup>-8</sup>     | W m <sup>-2</sup> K <sup>-4</sup>   |
| unified atomic mass unit (is one twelfth of |                       | 1.660 540 x 10 <sup>-27</sup>   | kg                                  |
| the mass of the atom of the nuclide 12C)    |                       |                                 |                                     |
| velocity of sound in air (s.t.p.)           | С                     | 331.45                          | m/s                                 |

\* exact values

Values of physical constants (apart from speed of sound) derived from CODATA Bulletin No. 63, Nov. 1986.

## **11. Conversion Factors**

Exact values are shown with an asterisk \*. Some of these units may no longer have a legal validity.

#### Length

| 1 Å                 | 100.0*        | pm |
|---------------------|---------------|----|
| 1 mil               | 25.4*         | μm |
| 1 in                | 25.4*         | mm |
| 1 ft                | 0.304 8*      | m  |
| 1 yd                | 0.914 4*      | m  |
| 1 mile              | 1.609 344*    | km |
| 1 nautical mile     | 1.852*        | km |
| 1 astronomical unit | 0.149 597 87* | Tm |
| 1 light year        | 9.460 3       | Ρm |

#### Area, Volume

| 1 in <sup>2</sup>               | 645.16*                  | mm <sup>2</sup> |
|---------------------------------|--------------------------|-----------------|
| 1 ft <sup>2</sup>               | 0.092 903 04*            | m <sup>2</sup>  |
| 1 yd <sup>2</sup>               | 0.836 127                | m <sup>2</sup>  |
| 1 ha                            | 10 000.0*                | m <sup>2</sup>  |
| 1 in <sup>3</sup>               | 16 387.064*              | mm <sup>3</sup> |
| 1 litre                         | 1.0*                     | dm³             |
| 1 UK fluid ounce                | 28.41 x 10 <sup>-6</sup> | т³              |
| 1 UK gal                        | 4.546 09                 | L               |
| 1 US gal                        | 3.785 41                 | L               |
| 1 ft <sup>3</sup>               | 0.028 316 8              | т³              |
| 1 yd <sup>3</sup>               | 0.764 555                | т³              |
| 1 mile <sup>2</sup> (640 acres) | 2.589 98                 | km <sup>2</sup> |
| 1 are                           | 100.0*                   | m <sup>2</sup>  |
| 1 acre (4840 yd <sup>2</sup> )  | 4 046.855                | m <sup>2</sup>  |

#### Mass, Density

| 1 oz (adp)           | 28.35         | g                 |
|----------------------|---------------|-------------------|
| 1 oz (troy)          | 31.10         | g                 |
| 1 lb                 | 0.453 592.37* | kg                |
| 1 tonne              | 1 000.0*      | kg                |
| 1 (UK) ton           | 1 016.05      | kg                |
| 1 Ib/ft <sup>3</sup> | 16.018 5      | kg/m <sup>3</sup> |
| 1 Ib/in <sup>3</sup> | 27.68         | Mg/m <sup>3</sup> |
| 1 cwt (UK)           | 50.802 3      | kg                |
| 1 carat              | 0.2*          | g                 |

#### Velocity

| 1 ft/s   | 0.304 8*  | m/s |
|----------|-----------|-----|
| 1 mile/h | 0.447 04* | m/s |
| 1 knot   | 0.514 4   | m/s |

#### Force, Pressure, Torque

| 1 ozf                      | 278.0      | mΝ  |
|----------------------------|------------|-----|
| 1 lbf                      | 4.448 22   | Ν   |
| 1 kgf                      | 9.806 65*  | Ν   |
| 1 Torr                     | 133.322    | Ра  |
| 1 mm Hg                    | 133.322    | Ра  |
| $1 \text{ in H}_2\text{O}$ | 249.09     | Ра  |
| 1 m H <sub>2</sub> O       | 9.806 65*  | kPa |
| 1 bar                      | 100.0*     | kPa |
| 1 lbf/in <sup>2</sup>      | 6.894 76   | kPa |
| 1 ft lbf                   | 1.355 82   | Νm  |
| 1 dyne                     | 10.0*      | μN  |
| 1 standard atmosphere      | 0.101 325* | MPa |

#### Energy, Power

| 1 eV                             | 0.160 218 2 | aJ |
|----------------------------------|-------------|----|
| 1 cal (international table)      | 4.186 8*    | J  |
| 1 Cal (= 1 kcal thermochemical)† | 4.184*      | kJ |
| 1 ft lbf                         | 1.355 82    | J  |
| 1 m kgf                          | 9.806 65*   | J  |
| 1 Btu                            | 1.055 06    | kJ |
| 1 therm                          | 105.506     | MJ |
| 1 kW h                           | 3.6*        | Mj |
| 1 ft lbf/s                       | 1.355 82    | W  |
| 1 m kgf/s                        | 9.806 65*   | W  |
| 1 Btu/h                          | 0.293 071   | W  |
| 1 hp (UK)                        | 0.745 7     | kW |
| 1 erg/s                          | 0.1*        | μW |

† Widely used for energy content of food. (There are different 'calories', of marginally different sizes; also note that the 'big calorie', used in newspapers etc., is 1000 times the corresponding 'small calorie'.)

#### **Nucleonics, Radiation**

| Curie       | 1 Ci            | 3.70 x 10 <sup>10</sup> * | Bq             |
|-------------|-----------------|---------------------------|----------------|
| rad         | 1 rd            | 0.01*                     | Gy             |
| Röntgen     | 1 R             | 2.58 x 10 <sup>-4</sup> * | C/kg           |
| barn        | 1 barn (or 1 b) | 10 <sup>-28*</sup>        | m <sup>2</sup> |
| foot-candle | 1 ft cd         | 10.76                     | lx             |

#### Special remark on logarithmic quantities and units

The expression for the time dependence of a damped harmonic oscillation can be written either in real notation or as the real part of a complex notation

#### $\mathsf{F}(t) = A \, \mathrm{e}^{-\partial \mathrm{t}} \cos(\omega t) = \mathsf{Re}(A \, \mathrm{e}^{-(\partial + j\omega) \mathrm{t}})$

This simple relation involving  $\partial$  and  $\omega$  can be obtained only when e (base of natural logarithms) is used as the base of the exponential function. The coherent SI unit for the damping coefficient  $\partial$  and the angular frequency  $\omega$  is second to the power minus one, i.e. 1/s. Using the special names neper, Np, and radian, rad, for the units of  $\partial$ t and  $\omega$ t respectively, the units for  $\partial$  and  $\omega$  become neper per second, Np/s, and radian per second, rad/s, respectively. Neper and radian are special names for the 'dimensionless' unit one, 1. The neper is used as a unit for logarithmic quantities; the radian is used as a unit for plane angles and for the phase of circular functions.

20

## Units & Symbols for Electrical & Electronic Engineering

© The IET 2016

(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

Corresponding variation in space is treated in the same manner

 $F(x) = A e^{-\alpha x} \cos(\beta \Box x) = Re(A e^{-\gamma x}), \gamma = \alpha \Box + j\beta$ 

where the unit for  $\alpha$  is neper per metre, Np/m, and the unit for  $\beta$  is radian per metre, rad/m.

In ISO 31, the level of a field quantity is therefore defined as the natural logarithm of a ratio of two amplitudes,  $L_F = ln(F/F_0)$ , and is hence a quantity of dimension one. The unit neper (= the number 1) is the level of a field quantity when  $F/F_0 = e$ .

Since power is often proportional to the square of an amplitude, a factor 1/2 is introduced in the definition of the level of a power quantity  $L_p = (1/2) \ln(P/P_0)$  in order to make the level of the power quantity under these circumstances equal to the level of the field quantity.

In practice the non-coherent unit degree, ...°,  $(1^{\circ} = \pi/180 \text{ rad})$  is often used for angles and the non-coherent unit bel, B,  $[1 \text{ B} = (1/2) \log_{e}^{10} \text{ Np} \approx 1.151 \text{ 293 Np}]$  is based on common logarithms (base 10) for logarithmic quantities. Instead of the bel, its submultiple the decibel, dB, is commonly used.

Some numerical conversion factors are:

| power level | 1 dB     | 0.05 log_ 10 Np (=0.115 129 Np)            |
|-------------|----------|--------------------------------------------|
|             | 1 Np     | 20 log <sub>10</sub> e dB (≈8.686 dB       |
| frequency   | 1 octave | log <sub>10</sub> 2 decade (≈0.301 decade) |
|             | 1 decade | log <sub>2</sub> 10 octave (≈3.321 octave) |

## 12. Graphical Symbols

### **Connections and network elements**



signal path

† Not in BS but in common use

#### **Power plant**

#### **Transformers:**



#### **Electronic devices**

#### **Amplifiers:**













general

operational

integrating

inverting

#### **Diodes:**



general



breakdown diode. Esaki diode



photo-diode

light emitting diode



tunnel diode

varactor

#### **Thyristors:**



triode thyristor (type unspecified)



triac



reverse blocking n-gate



triode thyristor p-gate

#### Units & Symbols for Electrical & Electronic Engineering © The IET 2016

(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

#### **Electronic devices (continued)**

#### Cells:





photo-conductive device

photo-voltaic

#### **Transistors:**



(use of the envelope symbol is optional unless there is a connection to it) † with substrate connection brought out

#### Logic symbols



#### Logic symbols (continued)





optical fibre

optical fibre cable

 $\Theta$ 

multimode stepped

index optical fibre

 $\otimes \perp$ 

single mode

stepped index

optical fibre

dB

optical attenuator



graded index

optical fibre

a/b/c/d

a core diameter

c first coating d jacketing

b cladding



permanent joint



optical connection femalemale



guided light devices

#### **Telecommunication symbols**









changeover contact in

optical fibre circuit



general symbol for: modulator, demodulator,

fixed loss attenuator

variable loss attenuator

distortion corrector

filter

discriminator



general symbol for charger



-[]-



threshold



balancing network



generator



hybrid transformer

. variable frequency

asterisk sine wave

saw tooth pulse

asterisk I artificial line delay line

delay line



(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

#### **Microwave devices**



#### **Units & Symbols** for Electrical & Electronic Engineering © The IET 2016

(The Institution of Engineering and Technology is registered as a Charity in England & Wales (no 211014) and Scotland (no SC038698).

## 13. Some Abbreviations

#### Commonly used abbreviations in optical, logic and microprocessor circuits

| Abbreviation | Description                              | Abbreviation | Description                 |
|--------------|------------------------------------------|--------------|-----------------------------|
| ACC          | accept                                   | INH          | inhibit                     |
| ACK          | acknowledge                              | INT          | interrupt                   |
| ADR          | address                                  | I/O          | input / output              |
| ALU          | arthmetic logic unit                     |              |                             |
|              |                                          | LD           | load                        |
| BCD          | binary code decimel                      | LOG 1        | logical one                 |
| BCTR         | bit counter                              | log z        | logical zero                |
| BIN          | binary                                   | LSB          | least-significant bit       |
| BPS          | bits per second                          |              |                             |
| BUF          | buffer                                   | MAR          | memory address register     |
| BUS          | bus                                      | MM           | main memory                 |
| В            | byte                                     | MPX          | multiplex                   |
|              |                                          | MR           | memory register             |
| CAR          | carry                                    | MSB          | most significant bit        |
| CC           | condition code                           | MUX          | multiplexor                 |
| CE           | chip enabled                             | μP           | microprocessor              |
| CLK          | clock                                    |              |                             |
| CLR          | clear                                    | Ν            | negation                    |
| COMP         | compare                                  |              |                             |
| CP           | clock pulse                              | OCT          | octal                       |
| CR           | clock register                           | OP           | operation                   |
| CT           | count                                    |              |                             |
| CTR          | counter                                  | PAR          | parity                      |
| CY           | cycle                                    | PC           | program counter             |
|              |                                          | PE           | parity error                |
| D            | data                                     | PU           | pull up                     |
| DEC          | decimal                                  |              |                             |
| DEL          | delay                                    | RAM          | random access memory        |
| DIN          | data in                                  | REG          | register                    |
| DOUT         | data out                                 | RES          | reset                       |
| DR           | data register                            | RO           | read out                    |
| DRAM         | dynamic random access memory             | ROM          | read only memory            |
|              |                                          | RUN          | run                         |
| EN           | enable                                   |              |                             |
| END          | end                                      | SET          | set                         |
| EPROM        | electronic programmable read only memory | SH           | shift                       |
| ERASE        | erase                                    | SRAM         | static random access memory |
| ERR          | error                                    | START        | start                       |
| EXOR         | exclusive or                             | STOP         | stop                        |
|              |                                          | STR          | storage                     |
| F            | function                                 | SYNC         | synchronisation             |
| FF           | flip-flop                                |              |                             |
| FIFO         | first in - first out                     | TERM         | terminate                   |
|              |                                          | ТО           | to (transfer)               |
| G            | gate                                     | TP           | time pulse                  |
| GEN          | generate                                 | TRIG         | trigger                     |
| GND          | ground                                   |              |                             |
|              |                                          | WI           | write in                    |
| HEX          | hexidecimal                              | WR           | write                       |

### **Component identification abbreviations**

| Abbreviation | Description                        | Abbreviation | Description                   |
|--------------|------------------------------------|--------------|-------------------------------|
| AE           | aerial                             | L            | inductor                      |
|              |                                    | LK           | link                          |
| В            | battery                            | LP           | lamp                          |
| BB           | busbar                             | LS           | loudspeaker                   |
| С            | capacitor                          | Μ            | motor                         |
| СВ           | circuit breaker                    | ME           | meter                         |
| CK           | clock                              | MG           | motor generator               |
| CON          | contactor                          | MIC          | microphone                    |
| CSR          | controlled semicondustor rectifier | MK           | morse key                     |
|              |                                    | ML           | module                        |
| D            | diode                              | MT           | telephone handset             |
|              |                                    | MX           | matrix                        |
| EQ           | equaliser                          | 5.0.0        |                               |
| _            |                                    | PCC          | photoconductive cell          |
| F            | fan                                | PEC          | photoelectric cell            |
| FB           | ferrite disc or bead               | PL           | plug                          |
| FC           | ferrite core                       |              |                               |
| FL           | filter                             | RE           | recording instrument or meter |
| FS           | fuse                               |              |                               |
| FW           | field winding                      | SD           | surge diverter of any type    |
|              |                                    | SE           | sealing end                   |
| G            | generator                          | SEM          | semaphore indicator           |
|              |                                    | SHW          | shunt winding                 |
| Н            | heater                             | SRAM         | static random access memory   |
| HC           | heat coil                          | SW           | seires winding                |
| HD           | hydrophone                         |              |                               |
|              |                                    | TD           | transductor                   |
| IC           | integrated circuit                 | TL           | telephone receiver            |
| IREG         | induction regulator                |              |                               |
| ISL          | isolator                           | U            | unit                          |
| К            | key                                | VB           | vibrator                      |

## 14. Letter and Digit Code for R & C Values

For resistors, R, K, M, G and T are used as multipliers for 1, 10<sup>3</sup>, 10<sup>6</sup>, 10<sup>9</sup> and 10<sup>12</sup>, respectively, of resistance values expressed in ohms, whilst for capacitors, p, n,  $\mu$ , m and F are used as multipliers for 10<sup>-12</sup>, 10<sup>-9</sup>, 10<sup>-6</sup>, 10<sup>-3</sup> and 1, respectively, of the capacitance values expressed in farads.

For example:

| Resistance values | Coded marking | Capacitance values | Coded marking |
|-------------------|---------------|--------------------|---------------|
| 0.15.0            |               | 0.15               | .15           |
| 0.15()            | R15           | 0.15 pF            | p15           |
| 1.5 Ω             | 1R5           | 1.5 pF             | 1p5           |
| 15.0 Ω            | 15R           | 15.0 pF            | 15p           |
| 1.5 kΩ            | 1K5           | 1.5 nF             | 1n5           |
| 150 kΩ            | 150K          | 150 nF             | 150n          |
| 1.5 MΩ            | 1M5           | 1.5 μF             | 1µ5           |
| 15 MΩ             | 15M           | 15 µF              | 15µ           |
| 1.5 GΩ            | 1G5           | 1.5 mF             | 1m5           |
| 1.5 ΤΩ            | 1T5           | 15 mF              | 15m           |

## Appendix A

#### List of Standards used in complilation of 'Units & Symbols'

British Standards Institution (BSI) Publications

| BS 3363: 1988 | Letter symbols for semiconductor devices and integrated microcircuits                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS 3939: 1992 | Graphical symbols for electrical power, telecommunications and electronics diagrams                                                                                      |
| BS 4058: 1995 | Data processing flow chart symbols, rules and conventions                                                                                                                |
| BS 5070: 1991 | Engineering diagram drawing practice. Part 4: recommendations for logic diagrams                                                                                         |
| BS 5555: 1993 | SI Units and recommendations for the use of their multiples (ISO 1000: 1992) and of certain other units                                                                  |
| BS 5775: 1993 | Quantities, units and symbols. Part 5: electricity and (ISO 31: 1992) magnetism. Part 11: mathematical signs and symbols for use in the physical sciences and technology |

Note: The information given in the Booklet is in accordance (where relevant) with the Council\* Directive on Units of Measurement (1991).

\*The Council of the European Communities

## Appendix **B**

### Typefaces used

#### **English Alphabet**

| Upper case upright | Lower case upright | Upper case sloping | Lower case sloping |
|--------------------|--------------------|--------------------|--------------------|
| Δ                  | а                  | Д                  | а                  |
| B                  | b                  | B                  | h                  |
| C                  | c<br>C             | C.                 | S<br>C             |
| D                  | d                  | D                  | d                  |
| F                  | e                  | F                  | e<br>e             |
| E                  | f                  | F                  | f                  |
| -                  | σ                  | G                  | σ                  |
| G<br>H             | 6<br>h             | H                  | 5<br>h             |
| 1                  | i                  | 1                  | i                  |
| I<br>I             |                    | 1                  | i                  |
| х<br>2             | J                  | K                  | )<br>k             |
|                    | K<br>I             |                    | к<br>1             |
|                    | T<br>m             |                    | 7                  |
| N                  |                    |                    | 111                |
|                    | 11                 |                    | 11                 |
| U                  | 0                  | U                  | 0                  |
| P                  | p                  | P                  | p                  |
| Q                  | q                  | Q                  | q                  |
| R                  | r                  | R                  | r                  |
| S                  | S                  | S                  | S                  |
| Т                  | t                  | Т                  | t                  |
| U                  | u                  | U                  | U                  |
| V                  | V                  | V                  | V                  |
| W                  | W                  | W                  | W                  |
| Х                  | Х                  | X                  | X                  |
| Y                  | У                  | Y                  | У                  |
| Z                  | Z                  | Ζ                  | Ζ                  |

## Appendix **B**

#### Typefaces used

#### **Greek Alphabet**

|         | Upper case upright | Lower case upright | Upper case sloping | Lower case sloping |
|---------|--------------------|--------------------|--------------------|--------------------|
| alpha   | А                  | α                  | A                  | α                  |
| beta    | В                  | β                  | В                  | β                  |
| gamma   | Г                  | Ŷ                  | Г                  | ,<br>V             |
| delta   | Δ                  | δ, δ*              | Δ                  | δ                  |
| epsilon | E                  | 3                  | E                  | 3                  |
| zeta    | Z                  | ζ                  | Z                  | ζ                  |
| eta     | Н                  | ή                  | Н                  | ŋ                  |
| theta   | Θ                  | θ                  | Θ                  | θ                  |
| iota    | Ι                  | I.                 | Ι                  | 1                  |
| kappa   | К                  | к                  | K                  | К                  |
| lambda  | Λ                  | λ                  | Λ                  | λ                  |
| mu      | М                  | μ                  | М                  | $\mu$              |
| nu      | Ν                  | V                  | Ν                  | V                  |
| xi      | Ξ                  | ξ                  | Ξ                  | ξ                  |
| omicron | 0                  | 0                  | 0                  | 0                  |
| pi      | П                  | π                  | Π                  | π                  |
| rho     | Р                  | ρ                  | Р                  | ρ                  |
| sigma   | Σ                  | σ                  | Σ                  | σ                  |
| tau     | Т                  | т                  | Т                  | Т                  |
| upsilon | Y                  | U                  | Y                  | U                  |
| phi     | Φ                  | φ                  | Φ                  | arphi              |
| chi     | Х                  | Х                  | X                  | Х                  |
| psi     | Ψ                  | Ψ                  | $\psi$             | Ψ                  |
| omega   | Ω                  | ω                  | Ω                  | ω                  |

\*Used only for partial differential coefficients



#### **IET Offices**

#### London

Savoy Place 2 Savoy Place London WC2R OBL United Kingdom www.savoyplace.co.uk

#### Stevenage

Michael Faraday House Six Hills Way Stevenage Herts SG1 2AY United Kingdom **T:** +44 (0)1438 313311 **F:** +44 (0)1438 765526 E: postmaster@theiet.org F: +86 10 6566 4647 www.theiet.org

#### **New Jersey**

379 Thornall Street Edison NJ 08837 USA **T:** +1 (732) 321 5575 F: +1 (732) 321 5702

#### Beijing

Suite G/10F China Merchants Tower No.118 Jianguo Road **Chaoyang District Beijing China** 100022 T: +86 10 6566 4687 **E:** china@theiet.org www.theiet.org.cn

#### Hong Kong

4412-13 Cosco Tower 183 Queen's Road Central Hong Kong **T:** +852 2521 2140 **F:** +852 2778 1711

#### **Bangalore**

Unit No 405 & 406 4th Floor, West Wing Raheja Towers M. G. Road Bangalore 560001 India **T:** +91 80 4089 2222 E: india@theiet.in www.theiet.in

#### **IET Venues**

#### **IET London: Savoy Place**

London **T:** +44 (0) 207 344 5479 www.ietvenues.co.uk/savoyplace

#### **IET Birmingham: Austin Court**

Birmingham **T:** +44 (0)121 600 7500 www.ietvenues.co.uk/austincourt

#### **IET Glasgow: Teacher Building**

Glasgow **T:** +44 (0)141 566 1871 www.ietvenues.co.uk/teacherbuilding

## www.**theiet**.org

The Institution of Engineering and Technology (IET) is working to engineer a better world. We inspire, inform and influence the global engineering community, supporting technology innovation to meet the needs of society. The Institution of Engineering and Technology is registered as a Charity in England and Wales (No. 211014) and Scotland (No. SCO38698).