Unmanned air vehicles

Phil McLachlan FIET

J A N U A R Y 2 0 1 4 **20YY** *Preparing for War in the Robotic Age*

RISKS

• Mid-air collisions with manned aircraft

• Harm to people

 Damage to property, in particular, sensitive infrastructure

EUROPE

European Commission

- 150K jobs in 10 years
- Strict rules on safety
- Protect the citizens rights, surveillance, monitoring
- Tough controls to ensure security
- Guaranteed third party liability and insurance
- EASA Safety approach
 - Open category
 - Specific Operation
 - Certified
- CAA
 - Certification authority <150Kg
 - CAP 722, Edition 6, Mar 2015
 - Dronecode

European Commission

USA

Milestone announcement 22 June 2016

"\$82B, 100,000 jobs in a decade"

- Small drones <55lb
- Visual Line of Sight in day and twilight
- Speed and over flight restrictions waivers from online portal
- Pilot certificate > 16 years old, tested every two years
- Operators responsible for safety visual checks, comms
- All pilots given 'privacy' training

Dronecode

- **D**on't fly near airports or airfields
- **R**emember to stay below 400ft (120m) and 150ft (50m) away from buildings and people
- Observe your drone at all times
- Never fly near aircraft
- Enjoy responsibly

Airspace Design for Small Drone Operations

"Clarity From Above" May 2016

Total	\$ 127.3 Billion
Mining	4.4
Telecommunication 6.3	
Insurance	6.8
Media & Entertainment	8.8
Security	10
Transport	13
Agriculture	32.4
Infrastructure	45.2
	(\$ B)

The detection challenge

Drone targets - Small, low and slow

Holographic Radar

Software based, scalable radar – wide application

Holographic radar for drone detection and tracking

- "Floodlight" transmit, planar array of receivers
- Digital beamforming on receive
- Detection of 0.01m² target to 5km
- 3D location and tracking
- 90° sector coverage
- No moving parts
- 0.25s update rate (variable, can be increased)
- Continuous staring at all targets, all the time very fine Doppler resolution
- Micro-Doppler resolves rotor motion, distinguish from birds

Drone tracked incoming from 5km

Autonomy

Drones are an increasing part of everyday life, but they are not taking over the world.

Phil McLachlan FIET