Transferable Safety
Motivation, Challenges and Potential Pitfalls

Jane Fenn – December 2013
Motivation – Interpreting the Question

NB. Comments predominantly refer to defence software-intensive systems

- Cost and development timescales for software systems have grown significantly with complexity
- Typically ‘accepted’ that use of open systems and/or Commercial Off-The-Shelf systems and components are viable strategies for reducing cost and timescales
 - however
- Reality is that addressing safety for these cases can out-weigh the cost/time savings for system development
 - Notable defence examples, eg. use of American-certified aircraft in UK – direct ‘transfer’ of an existing safety certification not accepted
- Intend to interpret the question as transferring existing ‘assurance’, and primarily ‘assurance evidence’, to facilitate the evaluation of product safety in a new environment
Motivation – Why am I interested?

• Current practice
 • BAE Systems buys-in significant amount of software for use on its project
 • Where the software is pre-existing, assurance evidence may be offered by the software’s supplier
 • Particularly where equipment is common with civil aircraft, likely that it has been developed to different standards, mainly DO-178
 • e.g. Radios, navigation equipment, TCAS
 • Desirable to re-use this evidence in the military regulatory environment

• Future practice
 • Currently working on a strategy for designing software for reusability
 • Will facilitate exchange of defence software components between aircraft, manufacturers and nations, and open up the marketplace for defence software
 • Need a strategy that addresses software by documenting the reusable software and providing assurance evidence which will proactively support software reuse
 • Particularly where different development standards might be used
Motivation – Isn’t that what Modular Safety Cases do?

Brief summary:
• If we can identify safety guarantees and associated dependencies at design interfaces, we can replicate that interface in the safety case and create a ‘daisy chain’ of dependencies and guarantees, linked by safety case contracts.
Motivation – Isn’t that what Modular Safety Cases do? (2)

- Essentially, the IAWG version of modular safety cases were trying to characterise the ‘gap’ left when the component was removed from a system, to support change impact analysis.
- Now, we want to characterise the ‘removed’ component so that it can be used in completely different safety cases.
- That brings new challenges!
Challenges

- **‘Context’** is the heart of the challenge, and at various levels of abstraction.
- ‘Context compatibility’ was also what we needed to address to justify the validity of the safety case contracts in modular safety cases!
 - Low Level Context
 - E.g. Mars Rover had mis-match in units of measurement at an interface
 - E.g. Assumptions about bandwidth of internet connection available on network
 - How to unambiguously record sufficient data about the interface
 - Lots of existing work on techniques for making designs and their interfaces more rigorous, but need something that is ‘portable’
 - Essentially:
 - How to know what is sufficient?
 - How to know what is relevant?
 - How to know what is important?
 - But not JUST at low level…..
Challenges

• High Level Context
 • Different regulatory environments which mandate different standards, and in some cases, even design choices
 • Even where domains are very similar
 • E.g. military and civil aerospace

<table>
<thead>
<tr>
<th>Item</th>
<th>Process present in military standard</th>
<th>Process present in civil standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify ways in which unexpected system behaviour can cause harm</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Allocate a severity to the potential accident</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Identify mechanisms for reducing the likelihood of the unexpected behaviour happening</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Identify assurance requirement for those mechanisms</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Challenges – Example – Military Aircraft

BUT Military standard (00-56) requires

- All *accident* sequences to be assessed
- Highest severity allocation is ‘CATASTROPHIC’
- Considers the *risk* of the *accident* occurring
- i.e. makes provision for mitigation to be through either
 - Reducing the probability of the causal events occurring
 - Reducing of the probability of the hazard propagating to an accident
 - By reducing the probability of the conditions occurring or introducing new ‘conditions’
- Assurance allocation to causal events may take into account the hazard-to-accident mitigation
 - Assurance allocated to mitigating functions-only
Challenges – Example – Civil Aircraft

BUT Civil standard (ARP 4754A + circulars) requires

- ‘Expected’ *accident* to be considered in assessing severity
- Highest severity allocation is ‘CATASTROPHIC’
- Specific requirements apply if ‘catastrophic’ severity allocated
- Assurance allocation to causal events may only be reduced by taking into account independent systems
 - Assurance allocated to whole equipment or module which generates causal events
- *Huge challenge to write a process so as to be compatible with both standards!*

Unpublished work copyright 2013 [UNCLASSIFIED]. BAE Systems. All rights reserved.
Potential Pitfalls

- Already considered some of the potential pitfalls, essentially insufficient or undeclared context
- Lists exist of properties to check, e.g. units, precision, endianism, etc
- But, often the problem is context that the original designer didn’t consider ‘important’
 - Seemed too ‘obvious’, based on ‘custom and practice’ on the original project
 - However, might too much contextual information be as bad as too little?
- Context issues that are specific to reusable software:
 - Consider case where software component is developed under DO-178, tested using target hardware and aircraft certification achieved
 - What if a variant aircraft has exactly the same functional/behavioural requirements but:
 - Uses a different compiler
 - Uses a faster processor
 - Has a different scheduling policy
 - What assurance evidence might be reusable in each case?
Wish List?

- ‘Portable’ mechanism for rigorously defining interface properties that may be relevant to safety
 - OPENCOSS?
 - **Short-term workaround:**
 - use abstract language – XML
 - Enforce a template for the safety-relevant information required when identifying any safety-related component as reusable

- ‘Portable’ mechanism for describing required or achieved assurance
 - ???
 - **Short-term workaround:** Developers to declare assurance information available about any reusable safety-related component

- Assurance Evidence characterisation that includes contextual dependencies
 - ??? – propose update to OMG and/or Assurance Evidence meta-model OPENCOSS?
 - **Short-term workaround:** Use checklist of anticipatable context

Unpublished work copyright 2013 [UNCLASSIFIED]. BAE Systems. All rights reserved.
Thank you