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Abstract: Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result
enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic
management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis.
The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the
accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term
memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers
temporal–spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A
comparison with other representative forecast models validates that the proposed LSTM network can achieve a better
performance.

1 Introduction
With the development of social economy, the number of vehicles in
metropolis is increasing sharply, and the existing road network
capacity is incapable of holding so many vehicles. To relieve the
heavy traffic state, two ways can be considered. One is to enlarge
the total road network capacity by expanding the number of lanes
on the existing roads. However, this requires both extra lands and
enormous expenditure on infrastructures, which are often not
viable in many urban areas. The other way is to use various traffic
control strategies so as to efficiently employ the existing road
network. This approach does not need much expenditure and is
viable in most cases, so it is more practical in reality. The control
strategies often involve the short-term traffic forecast technology,
to foresee the potential congestion so as to induce people make
more appropriate travel routes, and then relieve traffic congestions.
Therefore, accurate short-term traffic forecast is vital for traffic
control, and it becomes an indispensable part of the intelligent
transportation system (ITS).

Different from conventional traffic forecast, short-term traffic
forecast only forecasts the traffic flow in the near future of Δt,
where Δt varies from several minutes to dozens of minutes.
Limited by infrastructure, earlier researches were lack of detecting
devices for real-time traffic information obtaining, and the short-
term traffic forecast merely depends on the limited historical traffic
data. Therefore, the forecast results often have obvious deviation
compared with real traffic data. If more real-time traffic
information including traffic volume, vehicle velocity, road
maintenance and traffic control can be known timely, the forecast
result will be more reliable. Luckily, as transportation
infrastructure and data transmission technology advance, a traffic
information network is forming, which allows all kinds of real-time
traffic information to be monitored, and a huge amount of traffic
data can be easily obtained nowadays. These tremendous traffic
data facilitates a more accurate traffic forecast. Therefore, how to
promote the forecast accuracy by making use of the massive traffic
data has grown into a hotspot in recent years [1–3].

Over the past few decades, many data analysis models have
been proposed to solve the short-term traffic forecast, including
historical average and smoothing [4, 5], statistical and regression
methods [6, 7], traffic flow theory-based methods [8, 9] and
machine learning techniques [10, 11]. These forecast approaches

can be divided into two categories, namely parametric approaches
and non-parametric approaches. Among the parametric approaches,
autoregressive integrated moving average (ARIMA) model is
widely recognised as an accepted framework to build traffic
forecast model. Many works related to ARIMA have been done in
the past decades. As early as 1970s, Levin and Tsao applied Box-
Jenkins time-series analyses to predict freeway traffic flow, and
they found that ARIMA (0, 1, 1) model was most statistically
significant [12]. During the same period, Hamed et al. applied
ARIMA model for traffic flow forecast in urban arterial roads [13].
Some other improved approaches such as Kohonen-ARIMA,
subset ARIMA and vector autoregressive ARIMA are also used for
short-term traffic forecast [14–16]. Proved to be theoretically well
defined and practically effective, ARIMA has gradually been a
benchmark in newly developed forecast model comparison.
Parametric approaches can achieve a good performance when
traffic shows regular variations, but the forecast error is obvious
when the traffic shows irregular variations. To address this
problem, researchers also paid much attention to non-parametric
approaches in the traffic flow forecasting field, such as non-
parametric regression [17], neural network prediction [18], support
vector machine (SVM) [19], Kaman filtering [20, 21] and the
combination of these algorithms [22–27]. Li and Liu proposed an
improved prediction method based on a modified particle swarm
optimisation algorithm [28]. Kuang and Huang set up a radial basis
function (RBF) neural network forecast model [29]. Li et al.
established a combination of predictive models for the short-term
traffic flow forecast [30]. Wang et al. put forward a new method
called improved Bayesian combined model [31]. Xie et al.
proposed a wavelet network model for short-term traffic volume
forecast [32]. In summary, a large number of traffic flow prediction
algorithms have been developed to satisfy the growing demand for
real-time traffic flow information in ITS, and they involve various
techniques in different disciplines [33].

In recent years, tremendous traffic sensors have been deployed
on the existing road network, which generated a huge amount of
traffic data with high time resolutions. At the same time, the
problem of ‘data explosion’ gains increasing attention, and it is
challenging to deal with these data by using conventional
parametric approached due to the curse of dimensionality. Most
conventional traffic forecast methods are restricted in searching the
shallow correlation within the limited data, but cannot penetrate the
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deep correlation and implicit traffic information. Faced with the
tremendous traffic data in modern ITS, the utilisation of
conventional methods cannot ensure an accurate forecast.
Therefore, new techniques to deal with big data at a deep level are
eagerly demanded.

With the development of artificial intelligence, deep learning
approaches are emerged vigorously. Traffic forecast has been
gradually shifting to computational intelligence approaches, and
short-term traffic forecast based on deep learning approaches has
become a new trend [34]. Deep learning theory can address the
curse of dimensionality issue via distributed calculation. Compared
with conventional shallow learning architectures, deep neural
network is able to model deep complex non-liner relationship by
using distributed and hierarchical feature representation [35]. So
far, deep learning has achieved numerous successes in the domain
of computer vision, speech recognition and natural language
processing. Under the guide of deep learning theory, many neural
network variants have been proposed to assist traffic forecast.
Typical examples include feed forward neural network [36], RBF
neural network [37], spectral-basis neural network [38] and
recurrent neural network (RNN) [39]. Among them, RNN is widely
recognised as a suitable method to capture the temporal and spatial
evolution of traffic flow. However, previous studies proved that
traditional RNNs failed to capture the long-term evolution, and
training an RNN with 5–10 min lags was proved to be difficult
because of vanishing gradient and exploding gradient. To solve this
problem, a long short-term memory (LSTM) [40] network is
applied in short-term traffic forecast in this study. Compared with
conventional RNNs, LSTM network is able to capture the features
of time series within longer time span. Therefore, the traffic
forecast can achieve a better performance by using LSTM network.

The contributions of this study lie in three aspects. Firstly,
origin destination correlation (ODC) matrix is proposed, and ODC
matrix represents the correlations of different links within the road
network. Secondly, a cascade connected LSTM network with multi
layers is proposed for traffic forecast, and the two dimensions of
the proposed LSTM network directly represent the temporal–
spatial correlation. Thirdly, the ODC matrix serves as parameter
via full connection layers and vector generator, and generates a
new time series for memory units in LSTM network, which is
different from the state-of-the-art approaches. A comparative study
is conducted to validate the robustness of the proposed forecast
model.

The remainder of this paper is organised as follows. Section 2
introduces a general overview of existing literatures on traffic
forecast. The methodology is introduced in Section 3, and the
architecture of the proposed LSTM network model is explained
from five parts. Experiments based on traffic dataset are shown in
Section 4, and a comparison with conventional forecast approaches
is also given in this section. Conclusion and future work are at the
end of this paper.

2 Related work
Since the early 1970s, short-term traffic forecasting has been an
important part of ITS and related researches. It concerns
predictions from few minutes to possibly a few hours in the future
based on current and past traffic information. In early years, most
of the interest focused on developing methodologies that could be
used to model traffic characteristics such as volume, density, speed
and travel times, and then produced anticipated traffic conditions,
which could be viewed as classical approaches, such as cellular
automaton. Later, applications of data-driven approaches became
the keynote in the literature, and a rich variety of algorithms and
forecast models were proposed by researchers, most of which were
parametric approaches. As the growth of the amount of traffic data,
most conventional approaches showed insufficiency under the
condition of irregular traffic conditions, complex road settings, as
well as in face of extensive datasets with both structured and
unstructured data. As a result, the weight has been placed to
intelligence-based computational approaches recently, which
included neural and Bayesian networks, fuzzy and evolutionary
techniques, as well as different kinds of deep learning methods.

During the past few years, some representative studies have
been successfully applied in traffic forecast and achieved
reasonable performance. Huang et al. proposed a deep belief
networks with multitask learning [35]. His study provided a critical
review of the deep architecture network algorithms for traffic flow
prediction, and a multitask regression layer was used for
unsupervised feature learning. Lv et al. provided a general review
on traffic flow prediction with big data, and proposed a deep
learning approach, in which a stacked auto-encoder (SAE) model
was used to learn generic traffic flow features, and it was trained in
a greedy layer-wise fashion [41]. These two representative studies
adopted the deep learning technique, but the temporal–spatial
correlation is unobvious. Since the RNN was proposed, many
works have been done on the basis of RNN variants, in which a
representative study was conducted by Ma et al. [42]. His study
attempted to extend deep learning theory into large-scale
transportation network analysis. Moreover, a deep restricted
Boltzmann machine and RNN architecture were utilised to model
and predict traffic congestion evolution rested on real traffic
dataset. As RNN showed insufficiency when facing the long-term
time series, LSTM was naturally considered as an improved
approach. In 2015, Ma et al. utilised LSTM network to capture
non-linear traffic dynamic in an effective manner [43]. In his study,
the LSTM network was composed of three layers, in which the
hidden layer was composed of memory blocks, and the LSTM
network could automatically determine the optimal time lags by
proper training method, which was a promising innovation
compared with the existing literature.

Distinct from the aforementioned deep learning approaches, this
paper constructs a cascade connecting LSTM network with multi
layers based on memory units, and ODC matrix is integrated in the
LSTM network via full connected layers and vector generators.
ODC matrix contains the temporal–spatial correlations of different
links within the road network, and it assists LSTM network to
capture the feature of traffic flow evolution. The two dimensions of
the proposed LSTM network directly indicate temporal axis and
spatial axis. Compared with most existing traffic forecast methods,
the proposed one has a better performance on accuracy, and meets
the real-time requirement at the same time.

3 Methodology
Short-term traffic forecast is a temporal–spatial complexity. The
forecast result for next moment is based on the current state and
previous knowledge, which includes interactions among the target
road network. This paper deals with the tremendous traffic data
with a hierarchical structure, and integrates the temporal–spatial
correlation in the LSTM network to make a reliable forecast result.
The proposed short-term traffic forecast model is based on the
available technologies, which include the internet of vehicles
(IOVs), correlation analysis, RNNs. The detail of the methodology
will be explained in this section.

3.1 Internet of vehicles

Sufficient traffic data is the basis of accurate traffic forecast, and
the IOVs can provide us with tremendous traffic data. IOVs is a
huge information network, which contains vehicle position, vehicle
speed, vehicle route etc. Via global position system, radio
frequency identification devices, multi sensors, cameras and
internet technology, all kinds of information of traffic data can be
collected timely. Then data analysis can be implemented based on
the collected traffic information. Over the past years, tremendous
traffic sensors have been deployed all over the existing road
networks, and the dynamic traffic information can be well
monitored, which validates the promising future of IOVs. Though
the IOVs is still at a starting age, the existing tremendous traffic
data can already help us to make a more accurate traffic forecast.
Moreover, the precision of the sensors have been greatly improved
in recent years, which also contributes to short-term traffic
forecast.
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3.2 Temporal–spatial correlation

In the process of traffic forecast, temporal–spatial correlation is a
necessary factor that has to be considered. Temporal correlations
refer to the correlations of the current traffic flows and past traffic
flows with a temporal span (i.e. time domain), whereas spatial
correlations refer to the correlations of the traffic flow of targeted
road segment and that of its upstream and downstream road
segments at the same time interval (i.e. space domain). To
strengthen the temporal–spatial correlation within the road
network, ODC matrix is utilised to define the correlation among
different observation points. Let there are m observation points in
the targeted road network; then the size of the ODC matrix is
m × m, which can be denoted by

ODC t, Δt = Cr(St + Δt, St + 2Δt, …, St + iΔt, …, St + NΔt) (1)

where Cr is the correlation analysis function, St + iΔt is a vector that
denotes the observed traffic state in the ith time interval and this
vector can be denoted by St + iΔt = [x1, x2, …, xm]T, where x j
(1 ≤ j ≤ m) is the traffic data of jth observation points in ith time
interval. The element ri, j of ODC t, Δt  indicates the contributing
coefficient of ith observation point on jth observation point with a
temporal span of |i − j | × Δt. In this paper, the correlation analysis
function Cr is denoted by

ri j ΔT = Corr(X t , Y(t + ΔT)), t = 1, 2, …, N (2)

where time series X t  is the traffic data of ith observation point
and Y(t + ΔT) is the traffic data of jth observation point. The result
ri j ΔT  is the correlation coefficient of these two observation
positions.

It can be seen that ODC matrix is dynamic with time going on.
Both the observation time t and temporal span ΔT determine
elements in ODC matrix. The ODC matrix will work as input
parameters in LSTM networks.

3.3 Recurrent neural network

In conventional neural networks, there are only full connections
between adjacent layers, but no connection among the nodes within

the same layer. This type of network may fall into failure when
dealing with the temporal–spatial problems, because there are
always interactions among the nodes in temporal–spatial network.
Different from conventional networks, the hidden units in RNN
receive a feedback which is from the previous state to current state
[44]. Fig. 1 shows a basic RNN architecture with a delay line and
unfolded in time domain for two time steps. 

In this structure, the input vectors are fed one at a time into the
RNN, instead of using a fixed number of input vectors as done in
the conventional network structures. Besides, this architecture can
take advantage of all the available input information up to the
current time. In additon, the depth of the RNN can be defined
according to real condition. It can be seen that the final output is
not only depends on the current input but also depends on the
output of previous hidden layer.

The mathematic model of RNN in Fig. 1 can be indicated by

ti = Whxxi + Whhxi − 1 + bh

hi = σ(ti)
si = Wohhi + by

o^ = g(si)

(3)

where xi is the input variable, Whx, Whh and Woh are weight
matrixes, bh and by are bias vectors, σ and g are sigmoid functions.
ti, hi and si are the temporary variables, and o^ is the expected
output. The cost function can be set as

f = ∑
i

(∥ o^i − oi ∥/2) (4)

where oi is the actual output. As such, the output at t + 1 is the joint
function of the input at t + 1 and the historical data. The RNN
simulates the correlation in sequential data, and the depth of the
network is the time span. However, due to the vanishing gradient
and exploding gradient problems, the accuracy of RNN model
descends when the time span becomes longer, and it influences the
final output.

3.4 Structure of the memory unit of LSTM

LSTM network is a special kind of RNN. By treating the hidden
layer as a memory unit, LSTM network can cope with the
correlation within time series in both short and long term. In this
paper, the structure of the memory unit is shown in Fig. 2. A
memory cell is at the centre of the unit, which is denoted by the red
circle. The input is the known data, and the output is the forecast
result Ot. There are three gates in the memory unit, namely input
gate, forget gate and output gate, which are indicated by the green
circles. Moreover, the state of the cell is indicated by St, the input
of every gate is the preprocessed data Xt and the previous state of
the memory cell St − 1. 

The blue points in Fig. 2 are confluences, which stand for
multiplications, and dashed lines for the function of the previous
state. Based on the information flow in the structure of memory

Fig. 1  Structure of RNN
 

Fig. 2  Design of the memory unit of LSTM
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unit, the state update and output of memory unit can be
summarised as

it = σ(W(i)Xt + U(i)St − 1)

f t = σ(W( f )Xt + U( f )St − 1)

ot = σ(W(o)Xt + U(o)St − 1)

S
~

t = tanh(W(c)Xt + U(c)St − 1)

St = f t ∘ St − 1 + it ∘ S
~

t

Ot = ot ∘ tanh(St)

(5)

where ‘∘’ denotes the Hadamard product, it, f t and ot are the output
of different gates, S

~
t is the new state of memory cell, St is the final

state of memory cell and Ot is the final output of the memory unit.
W(i), W( f ), W(o), W(c), U(i), U( f ), U(o) and U(c) are coefficient
matrixes, which are labelled in Fig. 2. Via the function of the
different gates, LSTM memory units can capture the complex
correlation features within time series in both short and long term,
which is a remarkable improvement compared with RNN.

3.5 LSTM network for traffic forecast

LSTM network is usually applied in time-series analysis. For a
specific observation point in the road network, the historical traffic
data can be viewed as a priori knowledge. Different from the
conventional LSTM network, the ODC matrixes are integrated in
the proposed model, temporal–spatial correlation are indicated
from both cross-correlation analysis and data training. Besides, the
cascaded LSTM network can divide the long-term traffic forecast
into a few short-term forecast processes, and output multi traffic
flow forecast results in near future instead of a permanent forecast
time.

In the proposed LSTM network for short-term traffic forecast,
the data of every observation points are a time sequence, and the
structure of the proposed LSTM network is shown in Fig. 3. In this
two-dimensional network, the lateral dimension indicates the
changes in the time domain, and the vertical dimension indicates
different observation points’ indexes. That is, the proposed LSTM
network is a temporal–spatial network. The vertical axis indicates
the indexes of the observation points, which is in ascending order.
Once the indexes are assigned, the space distances in spatial axis
are determined as well. The lateral axis indicates the observation
points in temporal space, the time lags of this multi layers network
are denoted by Δt1, Δt2, …, Δtm, which meet the constraint
Tf = ∑i = 1

m Δti, where Tf is the forecast time, and m is the number

of layers, which is usually no more than 8. Δt1, Δt2, …, Δtm are
adjusted by minimise the sum of square errors. 

Within a specific moment t, a full connection layer is applied to
connect the output of previous time t − 1, which is similar to the
conventional artificial neural network. Let the traffic data of the
road network is St − 1 at time t − 1, which can be indicated by
St − 1 = x1, t − 1 , x2, t − 1 , …, xk, t − 1

T, and the input of the memory units
at t is denoted by It = X1, t , X2, t , …, Xk, t

T. The relation of the St − 1

and It is

It = M(t, Δt) ∗ repmat(St − 1, m), (6)

where M(t, Δt) is an ODC matrix, and ‘*’ denotes the
corresponding product, repmat(St − 1, m) is a new constructed
matrix with a same size of M(t, Δt) by duplicating the vector St − 1

m times. As such, the ith column of It is the corresponding
multiplication of elements in St − 1 and the elements in ith column of
M(t, Δt). As such, the input of each memory unit is a vector that
has close relationship with the traffic state at time t − 1, and this
process is indicated by a vector generator, which is indicated by
blue ellipses in Fig. 3. The kth memory unit will take the vector
Xk, t  as a priori knowledge, and output forecast result is based on
the internal computation of the memory unit, which has been
explained in the structure of the memory unit of LSTM. As such,
the temporal–spatial correlation is integrated in the 2D LSTM
network. The forecast results are closed with the historical traffic
data and interaction among different observation points.

3.6 Training algorithm

The training algorithm contains two aspects. One is the training of
LSTM, and the other is training the ODC matrix. A greedy layer-
wise unsupervised learning algorithm is used in the training
process. The key point of greedy layer-wise unsupervised learning
algorithm is training the LSTM network layer by layer. The
training procedure is based on the works in [45] and [46], which
can be stated as follows.

Step 1: Training the LSTM units: Firstly, initialise weight matrices
and bias vectors that include W(i), W( f ), W(o), W(c),
U(i), U( f ), U(o) and U(c) randomly. Then train the parameters by using
backward propagation method with the gradient-based
optimisation, to minimise the cost function. For different
observation points, the corresponding LSTM units are trained.

Fig. 3  Structure of 2D LSTM network
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Step 2: Initialisation of the ODC matrix: By referring to the traffic
database and the distribution of the observation points, determine
the ODC matrix at different time and different time interval.
Step 3: Fine tuning the whole network: Fine tune the whole
network by greedy layer-wise unsupervised learning algorithm.
Use the output of the kth layer as the input of the (k + 1)th layer.
For the first hidden layer, the input is a priori knowledge. Fine tune
the whole network's parameters is a top–down fashion.

4 Experiment
4.1 Data description

The proposed short-term traffic forecast model was applied to the
data collected by Beijing Traffic Management Bureau as a
numerical example. The traffic data are collected from over 500
observation stations with a frequency of 5 min, which are mostly
deployed within the fifth ring road of Beijing, as shown in Fig. 4.
Every observation stations have been equipped with cameras,
induction coils and velocity radars to obtain the traffic data such as
vehicle volume, lane occupancy and average velocity. 

Compared with the velocity and occupancy, vehicle volume is
more accurate and with less missing data. Therefore, we get the
traffic volume of days from 01 January 2015 to 30 June 2015 as
original dataset. There are 25.11 million validated records and 0.81
million missing or invalid data. To ensure the integrality of the
dataset, the missing or invalid data are remedied by using adjacent
data in temporal order. The original dataset were divided into two
subsets: data from the first 5 months are used as training dataset,
and the others are used as test dataset.

4.2 Evaluation for forecast result

Three criteria are commonly used to evaluate the performance of
traffic forecast model. They are mean absolute error (MAE), mean
square error (MSE) and mean relative error (MRE). The definitions
of them are

MAE = 1
n ∑

i = 1

n
|φ^

i − φi|

MSE = 1
n ∑

i = 1

n
(φ^

i − φi)
2

MRE = 1
n ∑

i = 1

n
|
φ^

i − φi
φi

|,

(7)

where φ^
i is the forecast data, while φi is the measured data.

According to (7), the MAE and MSE are more sensitive to the raw
traffic data. Therefore, MRE is more suitable to serve as evaluation
criteria when compared with other traffic forecast models.

4.3 Determination of the LSTM network

We choose 500 hundred observation points that are evenly
deployed within the fifth ring road. Every observation point is
treated as a memory unit. As such, there are 500 memory units in
the spatial axis in the LSTM network. Due to the sampling
frequency is 5 min in our data acquisition, the minimum lag is set
as 5 min in temporal axis, and the time lag is usually set as integer
multiples of 5 min. We use the proposed model to predict traffic
flow in 15, 30, 45 and 60 min, and the number of layers in the
LSTM network is set as 2, 3, 5 and 6 by trial and error,
respectively.

4.4 Experiment result

The experiment is implemented on a desktop computer with Intel
i7 3.4GHZ CPU, 16 GB memory and NVIDIAGTX750 GPU.
Firstly, traffic forecast results are compared with the original traffic
data, and then performances of different approaches are compared
to validate the efficiency of the proposed LSTM network.

In our experiment, three observation points are chosen near the
north third ring road and fourth ring road, which are denoted by A,
B and C, as shown in Fig. 4. The traffic volume of A is high, and B
is medium, whereas C is low. We use these three different types of
observation points as samples to compare the forecast results and
the original traffic data.

Fig. 4  Three observation points in the traffic network
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When the traffic forecast is 15 min, the forecast results and the
original traffic data of sample observation points from 01 June
2015 to 20 June 2015 are shown in Fig. 5. Figs. 5a–c, which are
correspond to observation points A, B and C, respectively. The
comparison shows that the forecast traffic flow has similar traffic
patterns with the observed traffic flow, and the forecast results are
close to the original data. The MREs are 6.41, 6.05, and 6.21%,
respectively. According to the forecast results, the proposed
method is effective and reliable for traffic flow forecast in practice.

The experiments for traffic flow forecast in 30, 45 and 60 min
are also conducted. To validate the efficiency of the proposed
LSTM network, the performance is compared with some
conventional forecast approaches, which include general RNN,
ARIMA model, SVM, RBF network and SAE model. Based on the
forecast results of observation points A, B and C, the MREs of
different forecast approaches are shown in Table 1. It can be seen
that the proposed LSTM network usually has the minimum MRE
compared with other models. 

Fig. 5  Comparisons of the forecast result and the measured data at different observation points
(a) Point A, (b) Point B, (c) Point C
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Considering forecast performance for all the 500 observation
points, we can get a series of MRE data for each forecast
approaches. To show the distribution of the MRE data, boxplots are
utilised to show the different performances, and a visual display is
shown in Fig. 6. The forecast time is set as 15, 30, 45 and 60 min,
respectively. 

4.5 Discussion

According to the comparison, the performance of the proposed
LSTM network is better than SAE, RBF, SVM and ARIMA model,
especially when the forecast time is long. SAE model based on
deep learning also shows a reasonable performance compared with
other approaches. When the forecast time is no more than 15 min,
the general RNN algorithm is relatively accurate, but when the
forecast time is longer, the error increase dramatically, which
demonstrates that RNN usually lose efficiency when copes with
long-time sequence problem. As an old machine learning
algorithm, SVM shows weakness when compared with other deep
learning methods such as RBF network, RNN, SAE and LSTM.

Moreover, the classical data analysis model ARIMA has more
obvious forecast error, which shows the disadvantage of classical
parameterised approach faced with tremendous traffic data.

5 Conclusion and future work
Traffic flow forecast is a critical problem in ITS. In this paper, the
authors proposed a novel short-term traffic forecast model. By
combining the interaction among the road network in both time
domain and spatial domain, a cascaded LSTM network is
established in this paper, and ODC matrix that indicates the
temporal–spatial correlation is integrated in the proposed network.
Experiments are conducted to validate the efficiency of the
proposed forecast model. According to the comparison with other
state-of-the-art methodology, it can be concluded that the proposed
LSTM network approach for traffic volume forecast is robust.

The study focuses on traffic volume prediction, but a
comprehensive traffic forecast which includes travel time, traffic
speed and occupancy has more significance for commuters. As a
future work, the authors will try to consider the relation among

Table 1 Forecast performances of different algorithms for sample observation points A, B and C
Models MRE(%) of different observation points with different forecast time

15 min 30 min 45 min 60 min
A B C A B C A B C A B C

ARIMA 10.23 8.25 15.23 14.32 12.67 15.62 14.56 16.85 17.86 25.36 25.64 26.31
SVM 12.31 10.63 8.62 11.50 12.50 12.64 15.24 15.26 14.69 24.36 32.54 34.21
RBF 7.54 6.98 6.24 10.36 12.65 14.32 13.69 18.62 12.68 25.34 16.85 36.54
SAE 6.45 6.32 9.64 9.68 9.96 12.60 15.63 14.26 11.39 17.62 16.96 18.56
RNN 6.39 6.35 6.74 12.36 13.54 14.21 15.69 16.98 18.63 29.61 20.36 29.64
LSTM 6.41 6.05 6.21 9.45 10.01 8.67 12.63 12.39 14.32 16.25 17.20 17.63

Comparison of the forecast accuracy by using different algorithms.
 

Fig. 6  Boxplots of MRE with different forecast time
(a) 15 min, (b) 30 min, (c) 45 min, (d) 60 min
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different format of traffic data, and then build a multiple input
multiple output traffic forecast system to output a comprehensive
short-term traffic forecast result.
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