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Abstract: A challenging application of artificial intelligence systems involves the scheduling of traffic signals
in multi-intersection vehicular networks. This paper introduces a novel use of a multi-agent system and
reinforcement learning (RL) framework to obtain an efficient traffic signal control policy. The latter is aimed at
minimising the average delay, congestion and likelihood of intersection cross-blocking. A five-intersection
traffic network has been studied in which each intersection is governed by an autonomous intelligent agent.
Two types of agents, a central agent and an outbound agent, were employed. The outbound agents schedule
traffic signals by following the longest-queue-first (LQF) algorithm, which has been proved to guarantee
stability and fairness, and collaborate with the central agent by providing it local traffic statistics. The central
agent learns a value function driven by its local and neighbours’ traffic conditions. The novel methodology
proposed here utilises the Q-Learning algorithm with a feedforward neural network for value function
approximation. Experimental results clearly demonstrate the advantages of multi-agent RL-based control over
LQF governed isolated single-intersection control, thus paving the way for efficient distributed traffic signal
control in complex settings.
1 Introduction
A critical traffic engineering challenge is the scheduling and
management of multi-intersection networks. Conventional
deterministic traffic management systems fail to scale with
respect to scheduling large networks of signals in urban
settings, largely due to the lack of a long-term reward
policy. In a heavy-loaded multi-intersection traffic network,
congestion occurring in a single lane does not only impact
upstream traffic, but also the other intersections. Thus, an
efficient scheduling method that maximises a long-term
reward and that can control a dynamic and complex traffic
environment is highly desired.

In this paper, we present a solution to this problem
by employing reinforcement learning (RL) – a machine
learning framework which attempts to approximate an
optimal decision-making policy. RL has been widely used
as a practical computational tool to learn an optimal control
policy [1]. Its applications include robotics, industrial
manufacturing, and real-world traffic network management.
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We utilise a multi-agent setting, whereby RL is employed
as means of controlling the different intersections in the
network. Q Learning, a popular RL algorithm [2], is used
to provide a control of the traffic signal scheduling.

In our study of a five-intersection, centrally connected
traffic network, we have assigned an autonomous agent to
each intersection and enabled the cooperation among
agents, facilitated via the exchange of basic information.
While outbound intersection agents are governed by the
longest-queue-first (LQF) algorithm (Section 3.3), the
critical intersection, the central one, is assigned a more
advanced agent which can incorporate traffic statistics of
its neighbours as part of its decision-making process.
Subjected to the large dimension of the state space, a
function approximation method is applied to store the
value function – a fundamental construct in RL used to
derive actions.

In summary, the proposed algorithm was developed
considering the traffic schedule in an artificial intelligent
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learning way, rather than the conventional traffic scheduling.
The coordination factor among the intersection is an obscure
object and has a nonlinear relation. The AI intelligent
algorithm can compute the inner nonlinear relation which
cannot be provided by the traditional approach. Simulation
results clearly indicate that the proposed RL control
scheme outperforms the LQF algorithm strategy by
yielding a lower delay and cross-blocking frequency,
particularly for medium and high traffic arrival rates.

The rest of the paper is structured as follows. Section 2
presents the basic principles of RL. In Section 3, a
summary of work in traffic signal scheduling is provided.
Section 4 describes the multi-intersection RL system
model, including definitions pertaining to the state, action
and reward function. Section 5 extends the algorithm by
introducing a neural network-based function approximation
module. Section 6 presents and discusses the simulation
results, and in Section 7, the conclusions are drawn.

2 Basic principles of RL
RL is a field of study in machine learning where an
agent, by interacting with and receiving feedback from its
environment, attempts to learn an optimal action selection
policy. RL algorithms typically learn and progress in an
iterative manner. During each iteration, the agent observes
its current environment, from which it infers the
environment’s state, then executes an action that leads the
agent to the subsequent state. Next, the agent evaluates this
action by the reward or penalty it is incurred and updates a
value function, accordingly. The value function is the utility
construct that it attempts to maximise (or minimise). A
commonly used RL algorithm is Q Learning [3]. The
latter is a model-free RL algorithm, which assumes that
the agent has no explicit knowledge of its environment’s
behaviour prior to interacting with it. Interaction with the
environment is what offers the agent knowledge regarding
both state transitions (as a function of actions taken) as
well as their related long-term reward prospect. The goal
of the agent is to maximise such long-term reward, by
learning a good policy which is a mapping from perceived
states to actions. In summary, RL methods provide a
way to solve complex, real-world control problems, and
one such challenge is traffic signal scheduling in multi-
intersection settings.

3 Work in traffic signal scheduling
3.1 Adaptive signal control systems

In the field of adaptive signal control systems, well-known
systems include SCOOT [4] and SCATS [5]. SCOOT
is a centralised system that continuously measures traffic
volumes and occupancies that serve to adjust signal timings
with the primary objective of minimising the sum of the
average queue in a specific area. A heuristic optimisation
evaluates potential timing plans adjusting the signal
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timings. In larger networks, the system defines smaller
regions for modelling and optimisation purposes. It uses in
real time the same traffic flow modelling scheme used in
TRANSYT (a steady-state model using platoon-dispersion
equations). SCATS does not require modelling. It is an
automated, real-time, traffic responsive signal control
strategy using local controllers and regional computers for
tactical and strategic control. Constant monitoring of
traffic allows the system to choose the appropriate signal
timings from a library, minimising vehicle stops with light
demand, minimising delay with normal demand and
maximising throughput with heavy demand. Systems such
as SCOOT and SCATS suffer from inefficient handling
of saturated conditions due to inadequate real-time
adaptability [6].

Other approaches such as OPAC [7–9] and RHODES
[7–9] calculate switching times by solving dynamic
optimisation problems in a real-time manner. Both
approaches do not consider explicitly cycle, split and
offsets. To obtain the optimal switching times, a dynamic
optimisation problem is solved in real-time employing
dynamic traffic models and traffic measurements. The
typical performance index to be minimised is the total
intersection delay. Such systems suffer exponential
complexities that diminish their chances of being deployed
on a large scale [9].

Another real-time control strategy is TUC [10]. Based on
a store-and-forward modelling of the urban network traffic
and using the linear-quadratic regulatory theory, the design
of TUC leads to a multivariate regulator for traffic-
responsive coordinated network-wide signal control that is
particularly suitable also for saturated traffic conditions.
Real-time decisions in TUC cannot be taken more
frequently than at the maximum employed signal cycle.
The strategy will need to be redesigned in the case of
modifications and expansions of the controlled network.
TUC was compared with a fixed-time signal control
producing reduction in total waiting time and total travel
time in the system.

3.2 Multi-agent systems

On the basis of TUC system, but aiming to cope with large
networks and to allow distributed reconfiguration, de Oliveira
and Camponogara [11] proposes a framework for a network
of distributed agents to control linear dynamic systems which
are put together by interconnecting linear subsystems with
local input constraints. The framework decomposes the
optimisation problem arising from the model predictive
control (MPC) approach into a network of coupled, but
small subproblems to be solved by the agent network. Each
agent senses and controls the variables of its subsystems,
while communicating with agents in the vicinity to obtain
neighbourhood variables and coordinate their actions. A
problem decomposition and coordination protocol ensures
convergence of the agents’ iterates to a global optimum of
129
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the MPC problem. The proposed approach achieved
performance comparable to the TUC system.

A distributed and interactive network of agents to manage
real-time traffic control was proposed in [12]. Each agent in
the cooperative ensemble is able to dynamically determine
the size of its cooperative zone. Therefore, a stochastic
cooperative parameter update algorithm was designed
improving the online learning and update process for the
agent.

In [7], a collaborative RL (CRL) system using a local
adaptive round robin phase switching model was employed
at each signalised junction of a network. Each signalised
junction collaborates with neighbouring agents in order to
learn appropriate phase timing based on traffic patterns.
Traffic patterns were of a steady and uniform nature. The
approach was compared with a non-adaptive fixed-time
system and to a saturation balancing algorithm producing
reduction in average waiting time per arrived vehicle.

In [13], multi-agent RL was applied to schedule traffic
signals at six intersections by constructing a vehicle-based
model. The RL systems learn value functions estimating
expected waiting times for cars given different settings of
traffic lights. Selected settings of traffic lights results from
combining the predicted waiting times of all cars involved.
Results show that the proposed algorithm can outperform
non-adaptable traffic light controllers.

3.3 Additional work in traffic signal
scheduling

It is argued that the use of a model-based RL approach adds
unnecessary complexities compared with using model-free Q
Learning RL. In [14], the model-free Q Learning RL-based
method was applied to derive an optimal and adaptive traffic
control policy for an isolated, two-phase traffic signal.
Performance was compared with that of a commonly used
pre-timed signal controller, resulting in significantly lower
delays with variable traffic flows.

In [15], RL and approximate dynamic programming
was used to develop a self-sufficient adaptive traffic signal
controller that substantially reduced vehicle delays when
compared with fixed time control in an isolated
intersection. Two learning techniques, temporal difference
(TD) RL and perturbation learning were explored. The
TD method constantly tracks the difference between
current estimation and actual observation of state values
and propagates the difference back to the functional
parameter so as to update the approximation. The
perturbation learning method directly estimates the
gradients of the approximate function by giving a
perturbing signal to the system state.

The problem of finding the optimal traffic signal timing
plans has been solved as a decision-making problem for a
0
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controlled Markov process in [16]. The Markovian model
developed as the system model for signal control
incorporates Robertson’s platoon dispersion traffic model
between intersections and employs the value iteration
algorithm to find the optimal decision for the controlled
Markov process.

Three self-organising methods for traffic light control
were proposed in [17]. The author defended schemes that
are distributed and non-cyclic. The methods presented
distinguished themselves because no direct communication
between traffic lights was utilised, only local rules.

Finally, in previous work, the authors proposed an LQF
traffic signal scheduling algorithm [18] for an isolated
intersection. The LQF algorithm was designed for a signal
control problem employing concepts drawn from the field
of packet switching in computer networks. The novel
method proposed utilised a maximal weight matching
algorithm to minimise the queue sizes at each approach,
yielding significantly lower average vehicle delay through
the intersection. LQF has been proved to be stable and
shown to yield strong performance attributes under various
traffic scenarios. However, to schedule a multi-intersection
network, where a phase scheduling decision at one
intersection would largely impact the traffic conditions in
its neighbouring intersections, is a more complex task. For
such settings, LQF, as well as many other existing schemes,
is inherently limited in the sense that it is unable to take
into consideration neighbouring intersections conditions.
It will be demonstrated that RL offers the capability to
provide distributed control as needed for scheduling
multiple intersections. At its core, the RL algorithm learns
a nonlinear mapping between intersection elements,
from which it can derive a high-performance policy for
scheduling traffic signals at a network of intersections.

4 System model
4.1 Notation and terminology

We begin with defining the terms and notation used
throughout the rest of the paper. Traffic throughput in our
study is defined as the average number of vehicles per unit
of time that successfully traverse the intersection. Traffic
congestion, typically occurring in multi-intersection
settings, is a condition in which a link is increasingly
occupied by queued vehicles. Highly congested
intersections often cause cross-blocking whereby vehicles
moving upstream fail to cross an intersection due to lack
of queuing positions at a designated link. Low traffic
throughput and high congestion both lead to an increase
in vehicle delay, a fundamental metric in evaluating traffic
signal controller performance. In our study, as well as
in the other multi-intersection scheduling schemes, the
ultimate goal is to maximise traffic throughput, avoid traffic
congestion and intersection cross-blocking and reduce
overall vehicle delay.
IET Intell. Transp. Syst., 2010, Vol. 4, Iss. 2, pp. 128–135
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4.2 Intersection network configuration

The network of intersections under study is illustrated in
Fig. 1. This is a five-intersection traffic network, in which
the intersection at the middle is referred to as the central
intersection. The other four intersections are labelled
as outbound intersections. In multi-agent systems, agent
cooperation does not mean an agent can extract
information from all other agents, but rather that agents are
able to inquire about regional (local) information from their
neighbours agents. Hence, we assume an intersection agent
can only communicate with its immediate neighbours.
Consequently, the network in Fig. 1 is a basic
computational component for larger multi-intersection
networks, without loss of generality.

Individually, a four-way intersection is the most common
intersection in real life, and therefore being most suitable to
be considered in our approach. Even though the capacity
of intersections might diverge, the queues that impact
the intersections are within a certain range from the
intersection. Therefore, considering the same maximum
capacity for intersections yields a more generic solution.

During each simulation time step, new vehicles are
generated, as governed by a Poisson process, outside each
outbound intersection. They are placed at the end of the
queue of their respective destination lanes. No vehicles are
generated at the central intersection. Based on our previous
study in [18], eight-phase combination schemes are
available to each intersection (Section 4.3.2). Vehicles in

Figure 1 Five-intersection, centrally connected vehicular
traffic network studied

Four outbound intersections operate based on local information
while the central intersection hosts an RL-based agent that
controls traffic signaling
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lanes which are notated by even numbers can either go
straight or turn right. Vehicles at the odd lanes should turn
left to their designated queues. All lanes can queue at most
40 vehicles. In general, vehicles cross either only one
intersection or three intersections (outbound-central-
outbound) prior to leaving the network. In our
performance analysis, we collect statistics pertaining to
vehicles which have crossed the central intersection.

4.3 Definition of the RL elements

An RL problem is defined once states, actions and rewards
are clearly defined. To that end, we next describe these
basic constructs in the context of our problem domain.

4.3.1 System states: At each simulation time step, the
local state of an intersection is based on local traffic
statistics. The state is represented by an eight-dimensional
feature vector with each element representing the relative
traffic flow at one of the lanes. The relative traffic flow is
defined as the total delay of vehicles in a lane divided by
the average delay at all lanes in the intersection. For the
outbound intersection agent, only local traffic statistics is
considered (as suggested by the LQF algorithm). However,
the central intersection agent is assumed to have access to
all states of its neighbouring intersections. Intuitively, such
additional information allows the central intersection to
better predict upstream traffic flow, thereby improving its
signal scheduling behaviour. There is a nonlinear relation
between the action selection and traffic statistics in the
network. Given the large state space that is spanned
under these assumptions, we employ a feedforward neural
network providing nonlinear function approximation.

4.3.2 Action set: As indicated in our previous work [18],
each intersection in Fig. 1 is labelled following the National
Electrical Manufacturers Association convention, applying a
two-ring structure. Each ring has four phases (1–4, 5–8).
At any given moment, one phase from each ring will be
displayed. Careful observation reveals that the maximal
number of applicable, compatible and non-conflicting
phase combinations is eight for each isolated intersection
presented {(1,5), (1,6), (2,5), (2,6), (3,7), (3,8), (4,7),
(4,8)}. In a multi-intersection network, each intersection
agent individually selects an action among the available
eight-phase combinations, according to its learned policy.
It can be noted that real networks already work under
the eight-phase combination schemes. In the proposed
approach, the sequence constraints are relaxed and may
affect only driver expectations, becoming a process of
behavioural adaptation.

It should be noted that for a fixed time controller, all
available phases should at least appear once within a cycle.
This is not the case for actuated controllers where phases
can be shortened or skipped, dependent on demand, and
where minimum and maximum green times for each phase
are imposed. Differently, the proposed algorithm decide on
131
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actions to be taken at regular intervals of time (20 time units,
for example), innovating the green time constraints concept.
In other words, smaller (minimum) intervals can be set where
a new action will take place or where the algorithm will
continue to choose the same action until it does not yield
the best reward. Therefore, the proposed algorithm deviates
from the established notion of coordination (split, cycle
and offset) and explores the concept that the proposed RL-
based multi-agent system can potentially guarantee better
overall network performance, minimising the average delay,
congestion and likelihood of intersection cross-blocking.

4.3.3 Reward function: For both types of intersection
agents, a reward is provided to an intersection agent after
executing a given action. The reward ranges from 21 to 1,
where positive reward values are received if the current
delay is lower than that of the previous time step. On the
other hand, the agent is subject to a penalty (negative
value) if an increased average delay is observed. In [19], a
weighted exit traffic flows metric was used to quantify the
reward. In our study, the local reward is directly affected by
vehicle volume and vehicular delay at an intersection, which
is defined as

r = Dlast −Dcurrent

max[Dlast, Dcurrent]
(1)

where Dlast and Dcurrent are the previous and current
intersection total delay, respectively. However, considering
the fact that the behaviour of the central intersection agent
impacts those of the other intersection in the network, we
propose to incorporate delay information from the other
networks into the reward measure of the central
intersection. This is achieved by defining r to be a
weighted sum (at a ratio of 1:4) of the central intersection
delay and that of the other intersections.

In a real-life application, vehicle delay could be estimated
through the application of technological advancements
in the field of vehicular sensors and traffic controllers.
Advance detector (upstream detectors) actuations can be
used to track vehicular arrivals at each intersection approach
over time. Phase change data and saturation headway data
can be used to estimate the number of departures from the
stop bar over time. The two flow profiles can then be
combined to estimate the queue accumulation on the
intersection approach. The time in queue can be used to
estimate delay for each approach and consequently for the
entire intersection.

5 System scheduling algorithm
5.1 The Q-Learning scheduling algorithm

The most important and popular model-free RL algorithm,
Q Learning [3], is utilised to quantify the preference and
effectiveness of selecting an action given a perceived state.
Following every selection of an action, the corresponding Q
2
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value is updated as follows

Q(st , at)� Q(st , at)+ a[rt+1 + g max
a

Q(st+1, a)

− Q(st , at)] (2)

where at is the action executed while in state st leading to the
subsequent state st+1, and yielding a reward rt+1, a is
the step-size parameter used in the incremental method
described above and changes from time step to time step
and g is the discount rate for the rewards.

With the continuous task, the reward to be maximised
could easily go to infinite. The discount rate g determines
the present value of the future rewards. A reward received
at time step in the future is worth gn21 after n time steps.
In vehicular traffic network, an intersection agent is
charged with selecting a phase combination for a
given traffic condition and updating the value function
approximation using the resulting reward. In time, as the
agent becomes proficient, the value function approximation
error is expected to become marginal.

5.2 Q Learning with function
approximation

Ideally, the estimation of the value function can be
represented in a tabular form, for which an optimal policy
can be obtained. However, most real-world problems have
large or infinite state spaces, with the problem at hand
being no different. This can be addressed by utilising
function approximation techniques, so as to approximate
the true value function [3]. Commonly used function
approximation methods included neural networks,
cerebellar model articulator controllers [20] and radial
basis functions [21]. In our study, a feedforward neural
network, trained using the back-propagation algorithm, is
used to provide an approximation to the state–action value
function.

The neural network used has 40 input nodes (representing
the 5 state vectors), 25 hidden units and an output
corresponding to each of the actions. At the beginning of a
time step, state information is collected, and for each of the
eight possible actions, a feedforward process is applied to
the neural network. This results in state–action value
estimates at the output of the neural network. The action
that corresponds to the highest state–action value is
selected with high probability, while with the
complementing likelihood an exploratory action is taken.
At the subsequent time step, the same process is repeated,
with the reward signal being received, allowing for an
estimation error of a[rt+1 + g maxaQ(st+1, a)− Q(st , at)]
to guide the process of learning the state–action values.
The goal of this learning process is to obtain a set of
weights (network parameters) that facilitate accurate state–
action value estimation.
IET Intell. Transp. Syst., 2010, Vol. 4, Iss. 2, pp. 128–135
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Since the weights of the neural network are initially
randomly assigned, the system is expected to be exposed to
sufficient experience so as to gain proficiency. Therefore a
large exploration rate is necessary at the very beginning
as means of promoting exposure to more states. The
exploration rate is reduced with the agent’s proficiency, to a
point where very little exploration is required.

5.3 Convergence for Q Learning by
function approximation

Although Q Learning in a tabular form has been proved
to converge deterministically to an optimal policy [22], Q
Learning with function approximation can only guaranteed
to reach a suboptimal policy [23], primarily because of the
limitations of the function approximation module. Having
said that, several techniques can be effectively utilised to
improve the overall performance of neural networks in the
context of value function approximations, with the
following techniques used in the setup described here.

1. Data standardisation: Large variance in input signal
magnitudes would belittle the contributions of inputs with
relatively small dynamic range. To address this problem,
the input values should be normalised within a specific
range. For each element in state vector, we impose a
dynamic range of [21, 1].

2. Activation function: Instead of using the common sigmoid
function, an anti-symmetric sigmoid function which is
centred at zero is taken as the activation function.

3. Learning rate adaptation: The learning rate controls how
fast the Q value would be updated. If the learning rate is
smaller than the second-order derivative of the delta error, a
local minimum can be found. A more efficient way to
achieve this goal is to use the Boltzmann learning rate [24],
which gradually decreases in time, proportional to the
reduction in mean error. In our simulations, the learning rate
is discounted by a fixed value and is lower-bounded by 0.01.

4. Momentum: During the learning process, should the
error result in negligible changes to the state-action value
estimates, an agent would assume it found the optimal
policy. In all other cases, a momentum element is used to
modified the weight changes such that

4k+1 = 4k + (1− ck)D4k
bp + ck(4k −4k−1) (3)

where 4k is the weight at time step k, D4k
bp the error gradient

and ck the learning rate.

5. Weight decay: Because of the random initial value of
weights when constructing the neural network, a weight
decay scheme has similar impact to that of pruning
methods and often leads to better performance. In our Q
Learning realisation, a simple weight decay approach was
taken, such that 4new = (1− 1)4old.
Intell. Transp. Syst., 2010, Vol. 4, Iss. 2, pp. 128–135
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6 Simulation results
6.1 Simulation setup and parameters

All simulations were executed in the Matlab environment
using a discrete event environment. A one time unit refers
to one time step in discrete simulation environment. One
discrete simulation time step is defined as one discrete
second. Intersection agents took actions once every 20 time
units, and no more than one vehicle was allowed to traverse
the intersection at each time unit. If a light signal
transitions from red to green, there is a 2 unit delay for
red-clear. Traffic arrivals followed the Poisson distribution
with average arrival rate ranging from 0.1 to 1.0. As
mentioned above, to evaluate the performance, we only
collected statistics pertaining to vehicles which passed the
central intersection. All simulations pertained to the five-
intersection network described in Section 4.2. The duration
of each simulation run was 20 000 time units. The weight
decay factor was 0.05, and the Q Learning discount factor
(g) was chosen to be 0.95.

6.2 Results and discussion

Promising results were reported by the authors in their
previous work [18] pertaining to the case of a single
intersection operating under the LQF scheme. Additional
work on traffic signal scheduling (Section 3) would usually
be compared with a fixed time strategy, what can be
considered not to be a fair comparison to adaptive,
responsive or intelligent systems, due to its static nature.
Differently, the LQF algorithm was compared not only to
an optimised fixed time strategy but to a vehicle-actuated
controller as well, yielding best results at higher relative
traffic loads. Appropriately, the comparison of the RL
system with the novel LQF system is then intrinsically
valid. The primary goal of the simulations presented next
were to contrast results drawn from a five-intersection
traffic network performing solely under the novel LQF
algorithm, with the results obtained using the CRL
framework proposed. Therefore the RL-based agent was
compared with that running the LQF algorithm, in which
every agent only considers its own local traffic volume
and thus controls its traffic signals in isolation. Prior to
measuring and evaluating the performance of the central
agent, the latter was given the opportunity to run for
10 000 steps so as to learn the environment with a
decreasing exploration rate. Following the learning phase,
the state–action value function updating scheme was
allowed to continue with an exploration rate of 0.02. It
should be noted that the outbound agents only apply the
LQF algorithm without RL and therefore not being
required to go through the learning phase.

An initial goal was to investigate the mean delay
experienced by vehicles traversing the central intersection
under either scheme. Fig. 2 depicts the mean delay per
vehicle, averaged over ten simulation runs. As expected,
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with an increase in traffic volume, we observe an increase in
average delays for both scheduling methods. When arrival
rates are lower than 0.45, the LQF scheduling algorithm
performs slightly better than the multi-agent Q Learning
system. This is because at low arrival rates, a relatively small
number of vehicles flow into the network and thus lengths
of queues are typically small. Under the LQF scheduling
scheme, all intersection agents simply count the number of
vehicles and select the maximal phase combination.
However, in the RL agent scheme, the central intersection
agent does not only take the queue lengths into
consideration, but also the waiting times, as reflected by
the unique reward function defined.

Upon issuing an action, the central intersection agent
receives a positive reward if the total intersection delay
was reduced with respect to the previous interval. If the
opposite holds, the agent is provided with a negative
reward (i.e. penalty). Therefore at low arrival rates, the
negligible discrepancy in the average delay times somewhat
limits performance. The latter has a turning point observed
at arrival rates of around 0.45. At higher arrival rates,
which correspond to more challenging traffic scenarios, the
RL based scheme improves significantly over the localised
scheme. In a congested traffic network, almost all queues
are fully occupied (relative to the prescribed limit). As an
extreme case, if the traffic arrival rate is 100%, the queue
length combinations would be close to identical and thus
LQF would take any of the eight actions with equal
probability.

The next performance metric to be considered was cross-
blocking, being computed by the time units when vehicles
can not cross the intersection in green phase due to the
fully occupied desired lane, divided by 20 time units. In
Fig. 3, cross-blocking comparative results are shown. The
proposed algorithm exhibits superiority over the LQF
algorithm. While vehicles can move across the intersection

Figure 2 Average delay per vehicle for the five-intersection
network discussed
4
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smoothly, as more and more vehicles flow into the traffic
network, the frequency at which vehicles are blocked
and are forced to come to a halt under a green light is
increasing. At medium to high arrival rates, the cross-
blocking frequency under the proposed algorithm only
accounts for half of that observed under the LQF controller.

7 Conclusions
This paper introduced a multi-agent system and RL-based
framework for scheduling traffic signals at intersection
networks. At the core of the proposed system is an
approximate optimal controller, which aims to maximise
an expected reward construct that directly relates to
minimising queuing delays across an intersection. The
proposed methodology is distributed and inherently scalable
where the latter pertains to the ability to map to larger
intersection networks. Therefore the algorithm can be
readily applied to more complex intersections without
substantial changes to its core structure. The proposed
approach was developed while viewing the traffic
scheduling problem as an artificial intelligence task,
representing a shift from conventional traffic scheduling
problem formulations. Careful integration of the adaptive
RL system with static LQF based controllers was studied
as both a developmental process and a gauging mechanism
for indicating the degree of improvement that can be
expected. Performance improvement was observed with
respect to both average vehicle delay as well as cross-
blocking likelihood, particularly in the context of high
traffic scenarios.

In future work, the authors intend to extend the initial
results obtained to include additional performance metrics,
such as probability of stopping and vehicle velocity jitter.
Moreover, the basic five-intersection network considered
here will be expanded to include larger traffic networks and
more extensive collaboration among agents.

Figure 3 Average cross-blocking in 20 time units for the
central intersection in the network studied
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