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Abstract: There have been many models
developed to represent electric loads. However,
the identifiability problem of load models has not
been studied, that is whether the parameters of a
model can be identified from a specified input–
output experiment. A study is made of the
identifiability of electric load models, and the
basic concepts and definitions are introduced.
Structural identifiability and input identifiability
are studied and numerical identifiability is
discussed. 

1 Introduction 

Since about 1941 there has been a continual trickle of
technical papers reporting on load characteristics as
determined through electrical tests and on the effects of
load representation on system dynamic performance.
During the past thirty years, there has been an
expended interest in load modelling [1–4]. Three kinds
of load models have been developed. 

(i) Composite induction motor (IM) models [5–11].
Induction motors constitute a large proportion of
power system loads. The induction motor models have
been long used in analysis and computation.

(ii) Input–output (IO) models [12–18]. This kind of
load model was developed in the last decade and is
receiving increasing attention.

(iii) Artificial neural network (ANN) models [19, 20],
which have recently been proposed.

In the past, considerable attention has been paid to
deriving the models of composite loads and their
parameter estimation. However, the study on identifia-
bility of load models has not been observed. It is the
authors’ opinion that identifiability should receive
much more attention in developing load models. The
main reason is that it is of great practical importance.
Those involved in estimating load parameters from
measurements would, of course, like to know whether
they stand any chance of succeeding. Whenever the
parameters are not uniquely identifiable, the very sug-
gestion of an attempt to estimate them is questionable.
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Many researchers who planned to give it only a passing
thought may find themselves trapped into a long-term
project. 

This paper gives a beginning to work in this area. At
first, some basic concepts and definitions are intro-
duced. Then the identifiability problem of load model-
ling is discussed according to model structure, input
type and numerical algorithm. 

2 Concepts and definitions 

2.1 Basic concepts 
Before turning to formal definitions, an example is pre-
sented to illustrate some of the subtleties of the identifi-
ability concept [21]. Consider a simple first-order linear
model: 

The model has three unknown parameters: p1, p2, p3.
For any known input u(t), the explicit solution of
eqn. 1 is: 

If the input is an impulse u(t) = δ(t), then 

It is well known that a semilogarithmic plot of the
data, represented as y(t) for this model, yields the coef-
ficient a ≡ p2p3 and exponent λ ≡ p1 of this model. Thus
only p1 and the product p2p3 can be determined and not
p2 or p3 separately, i.e. the model is unidentifiable This
is also clear from eqn. 2 for any known u(t). If p2 or p3
were known, or if a uniquely functional relationship
between p2 and p3 were known, all parameters could be
uniquely determined from y(t), and we could say the
model (or model parameters) is (are) uniquely (glo-
bally) identifiable. 

2.2 Complete model 
Let 

X = [x1 x2 ... xnx]T denote the state vector 

U = [u1 u2 ... unu]T the input 

Y = [y1 y2 ... yny]T the output (measurement) 

Z = [z1 z2 ... znz]T the unknown parameter vector. 

The observation interval is t0 ≤ t ≤ T and we allow the
initial state X0 = X(t0, Z) to also depend on Z. The
(nonlinear) vector function F characterises the known
input–state and state–state coupling, and G the known
output–state and output–input coupling, each parame-
trised by Z. Finally, H denotes the vector-valued set of
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all v additional and independent algebric equality or
inequality constraints relating X, U and Z, or any com-
bination of these, known a priori. In these terms, the
constrained structure, the basic system-experiment
model, is given by: 

2.3 Identifiability definitions 
The single parameter zi of the model eqn. 4 is: 

(a) uniquely (globally) identifiable, if there exists a
unique solution for zi from these relationships; 

(b) locally identifiable, if there exists a countable
number (≥ 1) of distict solutions for zi from eqn. 4 and
nonuniquely identifiable if this number > 1; 

(c) zero unidentifiable, if there exists no solution for zi
from eqn. 4; 

(d) ∞ unidentifiable, if there exist an infinite number of
solutions for zi from eqn. 4; 

(e) interval identifiable if it is ∞ unidentifiable and
there exist finite upper and lower bounds zi

min and zi
max

from the constrained structure in eqn. 4. The parameter
interval is denoted ∆zi = zi

max – zi
min; 

(f) quasi-identifiable (a posteriori) if it is interval identi-
fiable and ∆zi is small enough to yield a satisfactory
‘unique’ (point) estimate of zi for the application at
hand; 

(g) structural unidentifiable if zi is unidentifiable due to
the model structure; 

(h) input unidentifiable if zi is unidentifiable due to the
form or shape of input signal; 

(i) numerical unidentifiable if the numerical algorithm
used is unable to find the unique solution for zi from
eqn. 4. 

The difference between zero unidentifiable and ∞ uni-
dentifiable should be carefully distiguished. Also noting
that identifiability results depend on the form or shape
of the input functions, the topological structure of the
model, as well as the numerical algorithm used. 

3 Structural identification 

3.1 Example 1: speed dynamic induction 
motor model 
If both stator electrical transients and rotor electrical
transients are neglected; furthermore, the magnetising
reactance Xm is supposed to be very large, or let Xm →
∞; an induction motor load can be represented by the
well known classical speed dynamic model 

The observable output equations are: 
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where 
M denotes the inertial time constant 
s motor slip 
scr critical slip 
Tm mechanical torque 
X′ transient reactance 
V voltage imposed on the motor 
P, Q active and reactive power respectively. 
To investigate the identifiability of this model, a new
state variable is defined as 

then the state eqn. 5 becomes 

the output eqn. 6 becomes 

It is clear from eqns. 8 and 9 that only the product M
scr can be determined and not M or scr separately, i.e.
M and scr are ∞ unidentifiable. It shoud be emphasised
that ∞ unidentifiable does not mean there exists no
solution but means there exist an infinite number of
solutions. Of course, if M or scr were known any other
way, all parameters could be uniquely determined from
{V(t), P(t), Q(t)}. 

3.2 Example 2: linear model 
Under small disturbance, electric loads can be well
described by a linear dynamic model [15]. Let us
suppose that the real model is a first-order model
represented in the form of a transfer function: 

If a second-order model is used: 

To keep the same input–output behaviour, the transfer
functions should be the same: 

Hence, the parameters must satisfy: 

Obviously, there exist an infinite number of solutions
{β2, α1, α2}. This means that the parameters β2, α1, α2
are ∞ unidentifiable, or the second-order model is ∞
unidentifiable. On the other hand, if the real model is
the second-order model and the first-order model is
applied to describe it. It is clear from eqn. 13 that there
is usually no solution {a1, λ1} for given {β2, α1, α2}, i.e.
the first-order model is zero unidentifiable. The above
results can be generalised as: 

It should be pointed out that not only the order but
also the form of the model affects the identifiability of



IEE Proc.-Gener. Transm. Distrib., Vol. 144, No. 1, January 1997

model parameters. For example, if α1 and β2 in eqn. 13
are set to be zero, then there exists no solution or the
model is zero unidentifiable. 

4 Input identifiability 

4.1 Example 3: composite dynamic–static 
models 
In 1989 [16, 17], a ‘composite dynamic–static model
(CDSM)’ was proposed by the author. This model was
further developed in [18]. If the frequency dependency
and phase angle dependency are neglected, the model
can be written as: 

where Tp is the time constant; Ps(V), gv(V) are static
and transient functions: 

It can be proven that if: 

the model becomes Hill’s model [12]. If: 

the model will be the same as Karlsson’s model [13],
where α t is the transient exponent. In response to a
step voltage variation from V0 to Vs at t = 0, the solu-
tion of eqn. 14 consists of two components. One is the
quasisteady-state component Ps(t): 

Another is the voltage-dependent transient component
Pv(t): 

In the step test, the quantities P0, P(∞) = Ps(Vs) and
P(t) are measurable, and hence Pv(t), from which C1
and Tp can be obtained. Obviously, the static exponent
α s can be derived from Ps(Vs) and P0. The transient
parameter cp of eqn. 16 or the transient exponent α t of
eqn. 17 can be determined from C1. Therefore, Hill’s
model and Karlsson’s model are uniquely identifiable
with a step test. On the other hand, bp and cp (two
parameters) cannot be uniquely determined from one
value: C1. Consequently, CDSM (14), (15) is ∞ uniden-
tifiable with step test. 

However, we will prove that CDSM is identifiable
with ramp voltage variation. The voltage variation is
expressed as: 

It is proven in Appendix 9.1 that the solution of
CDSM is: 

where 
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According to pre- and post-steady state, the static
exponent α s can be obtained. Then Pv(t) can be calcu-
lated, from which Tp, d1 and d2 can be estimated.
Finally, bp, cp are determined from d1, d2 using eqn. 22.
It is therefore concluded that the CDSM is identifiable
with a ramp voltage variation. 

From this example, it is clearly observed that the
identifiability of some models depends on the type or
shape of the input signal. 

4.2 Example 4: Xu and Mansour’s model 
In 1994 [14], Xu and Mansour developed a load model
as follows: 

In a step test, Pt2(V) and Ps(V) jump from one value to
another value at t = 0, then keep constant. In the
Appendix, it is proven that the solution of eqn. 23 is: 

where ()s is the the value corresponding to Vs. It is easy
to calculate α s from V0, Vs and P0, Ps

s. With P(t), one
can estimate C2 and Tp2. Then using 

one can get α t. Finally, Tp can be determined from αt
and Tp2. As a result, Xu and Mansour’s model is
uniquely identifiable with a step test. 

5 Numerical identifiability 

5.1 Problem description 
Many parameter estimation algorithms, especially for
nonlinear models, are based on minimisation of an
index. The major procedure is to search the best
parameter vector Z* in the search space S, which mini-
mises an error tunction E, i.e. 

The error function E is usually taken as a non-negative
and monotonously increasing function of output error

where 
[t0, T] is the observation interval 
J(e) monotonously increasing function 
j the jth time sample 
N the number of all samples 
()m the measured (or true) values 
()c computed values. 
The most widely used forms of J(e) are square func-
tion, absolute function, square root function or their
combinations. 

Even the model is linear, and leaving aside some
highly exceptional cases, we may meet the difficuties
associated with minimisation problems when
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attempting numerical identification of model
parameters. In particular it is not known, whenever a
numerical program provides a solution, whether the
solution is unique (in which case the solution found is
fully justified), or whether a finite (but more than one)
or infinite number of solutions exist. In the latter cases
the solution found is only one of many. The next step
then is either to determine the set of possible solutions
and conclude that the actual solution is one of the
mathematical solutions found, or whenever possible to
propose experimental procedures leading to a unique
solution. 

5.2 Numerical algorithm 
In [7, 18] the authors have proposed a genetic algo-
rithm-based parameter estimation (GABPE) method.
The GABPE method has been applied to both compos-
ite induction motor load models and nonlinear input/
output load models with satisfactory results, which
show that the GABPE approach is robust, simple and
powerful. Its ability to find the global optimum is spe-
cially useful for solving the numerical identifiability
problem. 

Based on a genetic algorithm, the main procedure
involved in the approach for numerical identifiability is
given below: 

(i) Search one solution Z0 (model parameters) with
GABPE approach. Z0 is supposed to be the global
optimum or very close to the optimum; the correspond-
ing error function is E0. 

(ii) Search the contour with constant function value E0.
The obtained points are denoted as Z1, Z2, ..., Zm. 

(iii) If the distance between Zi and Z0 is small enough,
i.e. 

where ε is a small positive constant. Then, the solution
Z0 is considered to be unique or it is identifiable.
Otherwise, it is unidentifiable. 

5.3 Case studies 
The exact model parameters of the speed dynamic
induction motor model given in Section 3.1 are as
follows: 

Using GABPE, the parameters are estimated with the
dynamic response data when the voltage V(t) is step-
ping from 1.0 to 0.85 at t = 0. The a priori data of
genetic algorithm are following: 

population size = 50 

code length = 8 

crossover prob. = 0.9 

mutation prob. = 0.05. 

Table 1: Numerical identifiability example

No. M Scr Tm X′
0 1415.26 0.0808 0.9980 0.1962

1 1835.16 0.0622 0.9980 0.1962

2 972.61 0.1168 0.9980 0.1971

3 1390.05 0.0826 0.9980 0.1962

4 852.11 0.1321 0.9980 0.1962
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The obtained Z0 and the contour points Z1, Z2, ..., Zm
are given in Table 1, where E0 = 389.8. The results
clearly show that the model is unidentifiable, the same
as concluded in Section 3.1. 

6 Conclusions 

The identifiability problem of electric load models has
been studied for the first time. The well known first-
order speed dynamic induction motor model and the
higher-order linear model are shown to be structurally
unidentifiable. A composite dynamic–static model is
proven to be unidentifiable with step test, but
identifiable with a ramp voltage variation. That is, its
identifiability depends on input type. 

Identifiability is an important issue of load modelling
and should be given more attention. There is a need for
further work in this area, for example. 

(i) Identifiability of the well-known 3rd-order electro-
mechanical induction motor load model 

(ii) Identifiability of other IO models with different
inputs 

(iii) Identifiability of ANN models 

(iv) Numerical identifiability problem 

(v) Identifiability under noisy situations. 
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9 Appendixes 

9.1 Proof of eqn. 21 
In view of eqn. 20, the slope constant k is readily
obtained: 

Hence, during the time period t ∈  [0, t1], the transient
function and its derivate are: 

It is noted that eqn. 14 is a linear system if the voltage
(and hence gv) is known. As a result, we have 

Substitution of eqn. 28 into eqn. 29 yields 

To make the integration easier, let ρ = τ/Tp; then 
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Substituting the above equation into eqn. 30, integrat-
ing the another term in eqn. 30, and making some com-
bination, one can obtain 

This will lead to eqn. 21. 

9.2 Proof of eqn. 24 
The proof begins by supposing 

where λ is a positive constant. As t → ∞, x reaches a
new steady state. Consequently, eqn. 23 becomes: 

that is: 

It is clear from eqns. 33 and 34 that: 

Substitution of eqn. 33 into eqn. 23 results in 

Eqn. 35 tells us that: 

hence: 

Substituting eqns. 33, 36 and 37 into P(t), one obtains

where 

Therefore, eqn. 24 has been proven. 
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