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Abstract: Techniques for detection performance 
prediction for maritime surveillance radars are 
described, with particular emphasis on the use of 
the compound K-distribution model for radar sea 
clutter. The paper first briefly reviews the analyti
cal methods for deriving theoretical detection per
formance limits using compound models for both 
clutter and targets. Next, it is shown how the 
clutter environment is modelled for radar design 
evaluation, and methods whereby the radar may 
adapt to this changing environment for optimum 
target detection performance are described. This is 
followed by a description of a new method for 
performance prediction for a cell-averaging CF AR 
in real clutter, using recorded clutter signals but 
avoiding lengthy computer simulations. Finally, 
possible future developments of maritime sur
veillance radars are discussed. 

1 Introduction 

Part 1 of this paper [1] describes recent developments 
which have been made in the understanding and model
ling of radar sea clutter. Particular emphasis is placed on 
the use of a compound form of the K-distribution for 
describing the amplitude characteristics of the clutter. 
The purpose of developing this model has not only been 
to provide a better descriptor of the clutte11 itself, but also 
for the design and assessment of improved target detec
tion techniques. 

In this paper, it is shown how the clutter models can 
be incorporated with target models to derive detection 
performance limits. Further, it is shown how the model 
can be exploited to investigate the performance of partic
ular signal-processing techniques in a real clutter 
environment. 

Section 2 of the paper describes a generalised 
approach to theoretical performance prediction based on 
the standard concepts of optimum threshold settings to 
achieve required false alarm rates. 

Section 3 describes the modelling of the sea clutter 
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environment and its impact on the design of practical 
detection signal processing. This is extended to show how 
the compound K-distribution clutter model can be used 
to evaluate the detection performance of a cell-averaging 
CF AR detector using real clutter recordings as a data 
input. 

Finally, Section 4 discusses areas where further 
improvements in detection signal processing may be 
expected. 

2 Theoretical system performance prediction 

The significant improvements in understanding and accu
racy of performance evaluation which are achieved 
through the use of the compound K-distribution model 
are directly attributable to its compound nature. If the 
radar detection is based only on the fixed thresholding of 
a single variate (i.e. a single radar return), then per
formances can be predicted using a knowledge of the 
target and clutter probability density functions (PDFs) 
alone. 

If, however, the radar processing involves the use of 
more than one variate, then the correlation properties of 
the target and clutter become important. This is so, for 
example, if the threshold fluctuates because it is derived 
from other range samples or if many pulse returns are 
averaged before (or after) thresholding. In these cases, the 
use of the compound form of the K-distribution provides 
a more accurate assessment of performance than a model 
based only on an overall PDF, since it allows correlation 
properties of the clutter to be accounted for. The target 
itself may have a PDF and correlation properties which 
can also be modelled by a compound distribution and 
this can be combined with the clutter model to produce 
more accurate detection performance predictions. 

2.1 Detection prediction using compound 
distributions 

A generalised approach to detection verformance predic
tion is described here, followed by some examples. 

The PDF of clutter can be written, in its compound 
form, as 

p(_x) =r p(_y)p(_x I y) dy (1) 

For the compound K-distribution model p(y) is the PDF
of the local clutter power y, which is gamma distributed, 
with shape parameter v and a scale parameter c: 

c2v yv-1 

p(y)
= r(v) 

exp ( -c
2y) 0 � y � oo (2) 
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and p(x | y) is the PDF of the clutter amplitude for a given
value of the local mean j / . This is a Rayleigh distribution
of mean power y:

now be described by

2x / — x'
P(x\y) = jexp[-y oo (3)

A case of general interest is when a detection threshold is
set following the integration of several pulse returns.
Often, the Rayleigh (or 'speckle') component of the
clutter may be decorrelated from pulse to pulse (e.g.
through the use of frequency agility) whilst the local
mean power will remain approximately constant over the
integration period. The local mean clutter power may
vary spatially or, say, from scan-to-scan in an area sur-
veillance radar.

Following the analogue integration of n pulse returns
in these circumstances, the speckle component will have a
modified PDF given by an n-fold convolution of p(x | y),
described here as/n{p(x | y)}.

The probability of false alarm Pfa for a threshold level
t is then given by

Jo Jt
Up(x\y)}dxdy (4)

The presence of a target will modify the returns to give
an overall PDF of target plus clutter of p(x; a), where the
target has an amplitude a.

Considering first the simple case of a nonfading target
with a fixed amplitide a, the probability of detection fol-
lowing the analogue integration of n pulses will be

Jt
(5)

A more general expression for Pfa and Pd can be given as

Jo
n{t\a)= \p{y)Pn(t;a\y)dy

Jo
(6)

where Pn(t;a\y) is the probability of detection for a
known target amplitude a (or probability of false alarm
when a = 0) in clutter for a given value of y, following the
integration of n returns.

For a fluctuating target it is necessary to define
whether the fluctuations are independent from pulse to
pulse ('fast' fluctuations, as in Swerling cases 2 and 4, for
example) or from scan to scan ('slow' fluctuations, as in
Swerling cases 1 and 3).

For scan-to-scan fluctuations eqn. 6 becomes

n(t; a) = \ \
Jo Jo

p(a; a)p(y)Pn(t; a\y) da dy (7)

where a is the average target amplitude and p(a\ a) is the
PDF of the target amplitude.

For pulse-to-pulse fluctuations the expression for
Pn{t\ a I y) wiU b e modified so that now

Pn(t; a) = \Xp(y) f " J \° ltfi\ a)p{x; a \ y) da) dx dy (8)
Jo Jt Uo J

As another example, the targets may comprise both slow
and fast fluctuating terms. In this case, the target PDF
could be split ino a compound form:

p(a;a)= \ p(b; a)p(a\b) db
Jo

where b is a measure of the slow fluctuating component.
The detection performance of a fixed threshold might

J'oo ^00 Too

p(b;a)P(y)
o Jo Jt
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x/„j I p(a|%(x; a\y) da\ dx db dy (9)

There is a further underlying assumption in the form of
eqn. 9 which is that the target and clutter fading mecha-
nisms are independent of each other. More complex
interactions can readily be modelled, using similar tech-
niques to those described above. In each case it is neces-
sary to carefully analyse the various components of each
model to establish their relationships with one another
and their pulse-to-pulse fading characteristics. A number
of specific examples are described in detail here and else-
where. In Reference 2 (and here in Section 2.2) it is shown
how multipath reflection interference can be incorpo-
rated. Reference 3 describes the addition of thermal noise
where different approaches are needed, dependent not
only on the different target models but also on whether
or not the clutter speckle decorrelates from pulse to pulse
with the noise. In References 4 and 6 it is shown how the
detection performance of binary integrators can be
derived.

So far, the derivations given here have assumed a fixed
threshold for detection. In many cases the threshold may
try to adapt to the local clutter mean level y, rather than
assuming a fixed value determined by a false alarm rate
averaged over all y. This may result in a considerable
improvement in performance in some cases. A typical
example would be a cell averaging CFAR receiver (e.g.
Reference 5). A limiting case occurs when the theshold is
assumed to exactly adapt to the local mean level y and
this is termed 'ideal CFAR'. The calculation of detection
performance in this case is described in Reference 4.

The estimation of performance in the more practical
case where the adaptation of the threshold is not exact is
discussed in more detail in Section 3 of this paper.

2.2 Example of performance prediction — target
subject to multipath reflection interference

In this section we extend the analysis presented in Refer-
ence 2 of single-hit detection of a point target in the pre-
sence of multipath reflection interference and
K-distributed sea clutter, to cover pulse-to-pulse integra-
tion. The radar signal at the target is modelled as the
vector sum of a steady amplitude A, which is due to the
interference between the direct illumination, a coher-
ent sea reflection and a Gaussian noise-like term (with a
standard deviation on of the inphase and quadrature
components) due to incoherent sea reflection. This gives
rise to a target return amplitude having a Rice-squared
(RS) distribution. As shown in Part 1 of this paper [1], A
and an depend upon the multipath geometry and the sea
surface statistics. For given values of A and on, the target
return is assumed to be independent from pulse to pulse,
which leads to the RS distribution being substituted for
p(a; a) in eqn. 8. For K-distributed sea clutter the term
p(x; a\y) in eqn. 8 has a Rice distribution, and p(y) has a
gamma distribution. (The equivalent analysis for single
pulse detection is given in Reference 2.)

Fig. 1 shows performance results for detection follow-
ing a ten-pulse binary integration, with a 6/10 threshold
[4]. Various degrees of multipath interference are
imposed on the target using the ratio A2/al as a param-
eter, since it is a measure of the spread of the RS distribu-
tion, normalised to the target power. (If the target or

IEE PROCEEDINGS, Vol. 137, Pt. F, No. 2, APRIL 1990



radar were to move during detection assessment, the
parameter A2jal would fluctuate slowly. This could be
incorporated in the analysis by making a suitable substi-
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Fig. 1 Detection curves for nonfading target in K-distribution clutter
with shape parameter v, following 10-pulse binary integration (6/10 second
threshold), for varying degrees ofmultipath interference
Pd = 50%, Pfa = 10"6

tution for p(fc; a) in eqn. 9). The figure shows that for a
given target power, the effect of incoherent multipath
fluctuations may reduce detection by up to 3 dB, irre-
spective of clutter statistics. Relating this to surface
roughness is difficult to generalise, since both A and an
(and in consequence the target power) are a function of
surface roughness, and A is also a function of position in
the multipath fringe pattern. However, it is clear that the
incorporation of multipath fluctuations in performance
assessment is important.

Also included in Fig. 1 is a plot indicating the effect,
for this type of target fluctuation, of ignoring the pulse-
to-pulse correlation characteristics of the clutter. This
demonstrates the point, made in Reference 6, that the
compound correlated nature of the clutter is more impor-
tant than the amplitude statistics. Thus the effect on
target detection of changing from Gaussian statistics to a
K-distribution with v = 0.1 is less then 3 dB (if pulse-to-
pulse independence is assumed), whilst the real effect
(calculated by using the compound K-distribution model)
is a 12 dB degradation. It highlights the importance of
using the compound form of the K-distribution, and
illustrates the fact that simply taking an arbitrary dis-
tribution that only describes the amplitude properties of
the sea echo is insufficient and will lead to over optimistic
prediction of radar system performance when pulse-to-
pulse integration is exploited in the signal processing.

3 Evaluation of practical detection techniques

3.1 Environment
The mathematical modelling techniques described in
Section 2 provide the means for assessing the ideal per-

formance limits when the target and clutter character-
istics are known. In practice the various shape and scale
parameters of the amplitude distributions of targets and
clutter will not be known a priori and a radar must adapt
its processing to set the detection threshold at an appro-
priate level for the conditions actually encountered.

Before addressing the techniques which might be used
to adapt the radar detection thresholds, it is necessary for
the radar designer to be able to predict the range of con-
ditions likely to be encountered, their dependence on
various radar systems parameters and their likely rate of
change, both temporally and spatially.

A number of empirical models for the shape and scale
parameters of the distribution of the clutter envelope are
available to assist the designer. These include models for
clutter reflectivity, a0, and the K-distribution shape
parameter v. The importance of these models is to
provide guidance on the range of values likely to be
encountered rather than providing any precise insight
into the various parametric dependencies. The scale of
the clutter returns can be estimated from a knowledge of
the clutter reflectivity a°. Many measurements of a0 have
been published in the literature [7, 8] and several useful
empirical models are available [9, 10] relating typical
values of <r° to wind speed, wind direction, grazing angle,
radar frequency and polarisation. Wind speed is often
interpreted in terms of sea state or wave height, although
it is local wind speed which appears to be the dominant
factor in determining <T°, not the prevailing wave height.
This is particularly likely to be so when there is a strong
underlying sea swell resulting from wind-driven waves
generated elsewhere. On the other hand, the sea swell is
an important factor determining the shape of the clutter
amplitude distribution. Empirical models for the K-
distribution shape parameter v are described in Reference
1, relating v to grazing angle, across-range resolution,
swell direction and radar polarisation. The empirical
models of v given in Reference 1 are strictly only for
radar operating in I-band and for a single range
resolution of about 4 m. As an initial guide to the range
of values expected, the relationship between v and range
resolution can be considered as scaling in the same
manner as between v and the across-range resolution.
However, the precise relationship is normally more
complex and depends on the relative scaling of the radar
pulse length and the spatial correlation of the clutter
returns which will in turn often be determined by the sea
swell wavelength. Further discussion of this can be found
in Reference 11.

Using these empirical models for <x° and v, pictures of
the typical clutter environment can be developed as illus-
trated in Figs. 2 and 3. Fig. 2 shows the predicted signal

0 30 60 90 120 150 180
wind direction, deg

Fig. 2 Example of variation of signal to clutter-plus-noise ratio as
function of wind direction and radar range
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to clutter-plus-noise ratio S/(C + N) for an example
I-band radar, as a function of range to a target and the
wind direction. The target is assumed to be on the sea
surface and the wind speed is lOm/s. The radar is also

-1.0
0 15 30 45 60 75 90

swell direction,deg

Fig. 3 Example of variation of K-distribution clutter shape parameter
as function of sea-swell direction and radar range

assumed to have a 4 m range resolution and to be at a
height of 100 m above the sea surface. Multipath effects
on the target are not included. Although these figures are
for a specific set of radar parameters, a number of typical
features can be observed. The radar performance is
clutter limited at short range and degrades initially with
increasing range as the clutter return increases relative to
the target. Thereafter S/(C + N) increases again as a0

reduces with increasing range, until the performance
becomes increasingly influenced by receiver thermal
noise, resulting in a rapid reduction in performance
towards maximum range. As well as this variation in
range, there is a clear dependency on wind direction with
S/(C + N) varying over 5 dB between the up-wind and
down-wind directions in the clutter limited region.

Fig. 3 shows a similar plot of the variation of K-
distribution shape parameter for the clutter as a function
of range and sea swell direction, for the same conditions
as Fig. 2. It should be noted that there is generally no
difference between the up-swell and down-swell values of
v observed and so Fig. 3 is only plotted over a 90° varia-
tion in swell direction. In this example the total spread of
values shows v potentially varying between values of
about 5 and 0.5, although at ranges beyond about 30 km
the performance will be increasingly dominated by recei-
ver thermal noise in spite of the clutter becoming increas-
ingly spiky. A more detailed discussion of the effects of
combined clutter and noise can be found in Reference 3.

For single-pulse detection a useful approximation to
detection performance can be achieved by assuming that
the target is to be detected in clutter alone but with a
modified value of v given by

Veff = VI —Y
CNR)

(10)

where CNR is the clutter-to-noise ratio [3].
As well as the overall amplitude characteristics speci-

fied by (7° and v, it is necessary to have some insight into
the likely spatial variation of the local clutter levels. This
is particularly important for high resolution radars where
the performance of adaptive thresholding techniques is
being assessed. Some good examples of the range of con-
ditions which can be found are given in References 1 and
11. Two specific examples of the variation of mean clutter
level (y in eqn. 2) as a function of range are given in Fig.
4. These will also be used in Section 3.2 for the discussion
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on adaptive thresholding performance. These range pro-
files were taken from recordings obtained with an air-
borne I-band (8 GHz to 10 GHz) radar incorporating
frequency agility, with an antenna beam width of 1.2° and
a 28 ns pulse length. The envelope detected returns were
averaged over several hundred pulses to remove the
speckle component.
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range samples—»•

100
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100 200 300

range samples—»-

Fig. 4 Examples of radar range profiles of mean clutter envelope

One range sample interval = 2.6 m
a Down-swell direction, v = 1.5
b Across-swell direction, v = 10

The data in Fig. 4a was obtained with horizontal pol-
arisation, looking down-swell in a sea-state 4 to 5, with a
grazing angle of 0.9° and at a range of 34 km. The range
profile shows a very strong periodicity with range which
reflects the long wavelength sea swell which was observed
at the time. This wide variation in local mean level is
reflected in a shape parameter v having a value of 1.5.

The data in Fig. 4b was collected under the same sea
conditions but with vertical polarisation, a grazing angle
of 4.3°, a range of 8 km and looking across-swell. This
data exhibits a much smaller variation about its mean, as
expected with the larger grazing angle and across-swell
viewing direction.

This is reflected by a larger value of v of about 10,
indicating much more noise-like clutter returns when the
speckle component is included.

These examples have been chosen to illustrate two
very different clutter conditions which can be observed in
the same area of sea. The optimum detection processing
may be quite different for the two, as discussed in the
next section.

3.2 Detection signal processing
The radar processor will be required to adapt its pro-
cessing to match the clutter environment.

Nonparametric or distribution-free methods, such as
those incorporating rank ordering techniques [12, 13]
are not normally suitable for sea clutter since they
require independent samples from pulse to pulse. As the
clutter distributions are known to belong to the family of
K-distributions, a better approach to CFAR design is to
obtain estimates of the shape parameter v and the scale of
the returns and to use these to determine the threshold
required. This type of approach is described in Reference
14 and a typical example of its use for Weibull clutter is
given in Reference 15. Provided that the clutter local
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mean level is fairly well decorrelated in range, suitable
estimates of the distribution parameters should be
obtainable using samples from a sliding window in range.
In the limit, the performance achievable from such a
CFAR processor should approach the fixed threshold
results discussed in Section 2. Such a process can be
described as CFAR in the sense that the overall Pfa is
constant, but the Pfa will, in fact, have a spatial distribu-
tion dependent on the local value of mean clutter reflec-
tivity. This may often reflect the best performance
achievable, but clearly a 'fixed' threshold applied to the
data in Fig. 4a would exhibit considerable spatial 'bunch-
ing' of false alarms.

For this type of clutter, it should be possible to adapt
the threshold locally to follow more closely the mean
level fluctuations. A well known approach is to use a cell-
averaging CFAR [5], which with appropriate averaging
length may well achieve better detection performance and
control of false alarms than a fixed threshold (i.e. one that
is determined only by the overall shape and scale of the
clutter distribution). Such a detector is illustrated in Fig.
5, combined with a binary integrator.

ated with the sea swell) it may be possible to adapt to the
local variations of mean level by using a cell-averaging
length which is shorter than the sea swell wavelength. If
the 'ideal CFAR' [4] conditions were to be achieved the
value of /? required would be independent of the distribu-
tion of the clutter local mean level. In practice some
control of /? is likely to be required but the range of
values expected over a complete radar search area may
be considerably reduced.

The precise interaction between a cell-averaging
CFAR and the clutter returns will depend on the configu-
ration of the CFAR system and the spatial correlation of
the clutter. The use of shorter averaging lengths will
enable the thresholds to follow more rapid spatial varia-
tions but will also introduce increased 'CFAR loss' due to
fluctuations of the threshold induced by the speckle com-
ponent of the clutter.

Clearly, the analytical prediction of performance of a
short-length cell-averaging CFAR in spatially correlated
clutter will be very difficult, particularly since no suffi-
ciently accurate models of the spatial variations of the
clutter returns currently exist. One method of assessing

first threshold

this part not used
for s'nqle sided
CFAR

binary
integrator

second
threshold

1/J

integration over
J radar pulse intervals

required Pta •

threshold multplier

false alarm
count

Fig. 5 Cell-averaging CFAR followed by binary integrator with feedback control of the first threshold multiplier /?

Cell-averaging CFAR lengths in the text are given by N for single-sided CFARs and 2N for double-sided CFARs. The sample under test is separated from the CFAR
filters by a gap of G samples and the transversal filter weights are given by a,, i = 1, . . . , N.

If the cell-averaging length is very long, extending over
several sea swell wavelengths, then the cell-averaging
CFAR will provide an estimate of the overall mean
clutter level. The false-alarm rate is determined by the
multiplier /? shown in Fig. 5 and the appropriate value
for p is dependent on the clutter shape parameter.

If the shape parameter can be estimated as it varies
over the area of operation of the radar, then the appro-
priate value of ft could be calculated. Alternatively, a con-
tinuously adapting feedback system, such as described in
Reference 16, could be used to maintain the desired false-
alarm rate at the output of the detectors. On the assump-
tion that 0 is estimated correctly, a cell-averaging CFAR
detector with a sufficiently long averaging length should
approach the performance of the ideal fixed threshold
detector. In a typical application v and hence /? may vary
quite widely. In the example of Fig. 3, v varied between
0.5 and 5 and to maintain a constant false-alarm rate of
10~4 at the output of a binary integrator with a 6/10
second threshold would require values of /? in the range 8
to 15 dB (ignoring any effects of thermal noise).

Reference to Fig. 4 suggests that when the returns
show a strong periodic spatial variation (normally associ-

performance is to use recordings of real clutter as inputs
to computer simulations of the signal processing. This is,
however, extremely time consuming and it is difficult to
achieve reliable estimates of very low false-alarm rates.

The use of the compound K-distribution model pro-
vides a means for a considerable simplification of the
assessment of some signal-processing schemes using real
clutter recordings as inputs, as described below.

3.3 Cell-averaging CFAR performance in real clutter
The performance of a cell-averaging CFAR followed by a
binary integrator is illustrated here, as an example of the
use of the compound K-distribution model for per-
formance assessment of signal processing in real clutter.
The basic detection system is shown in Fig. 5, although
the dynamic performance of the feedback control of the
threshold multiplier /? will not be considered here.

The radar returns are first passed through a linear
detector. This is followed by a single- or double-sided
cell-averaging CFAR implemented in the form of a trans-
versal filter with preset weights on each filter tap. This
filter provides a weighted sum of the clutter range cells
surrounding the cell under test. The output is multiplied
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by a factor fi and used to control the first threshold of a
dual threshold binary integrator. The binary integrator
operates over several radar pulses for each range cell. It is
assumed that the radar employs pulse-to-pulse frequency
agility to decorrelate the speckle component of the
clutter.

One of the problems of a mathematical analysis of
such a system is the description of the spatial variation of
the clutter mean level. Rather than simply using raw
clutter recordings in a full scale simulation, it is shown
here how profile recordings of the mean level of real
clutter (see Fig. 4, for example) can be used as the prime
input, with a considerable saving in computer time.

A mathematical explanation of the method is given in
the Appendix 7 but a summary of the techniques used is
given here. It is assumed that mean level range profiles
are provided in the form of linearly detected and sampled
data with a sampling interval which is shorter than the
range resolution of the radar pulse.

The first part of the method involves a computer simu-
lation of the cell-averaging CFAR using the mean-level
range profiles as input data. It is assumed that the real
clutter range samples can be represented by Rayleigh
variates with mean levels determined by the range profile.
From this simulation it is possible to estimate the mean
and variance of the cell-averaging CFAR filter output for
each position in range. The mean-level estimate is simply
the weighted sum of the range profile samples over the
filter. The variance of the filter output is obtained from
the weighted sum of the variances of the samples
assuming them to be Rayleigh variates. Due allowances
must be made in the calculation of variance for the fact
that the data will in general be sampled more frequently
than the range resolution of the radar pulse. This means
that the Rayleigh component of successive range samples
will be correlated.

After scaling with the required value of /? we now have
estimates of the mean and variance of the threshold as a
function of range. The analysis which follows requires an
estimate of the amplitude distribution of the threshold.
For cell-averaging CFAR filters which use large numbers
of independent range samples, this will be closely approx-
imated by a Gaussian distribution using the central limit
theorem. For shorter averaging lengths this approx-
imation will not be so close but it has been found by
comparison with direct simulation that even for very
short lengths, equivalent to perhaps five independent
samples, the approximation is adequate for the purposes
of this evaluation.

3.3.1 Calculation of probability of false alarm Pfa: The
cell-averaging CFAR threshold is assumed to have a
Gaussian amplitude distribution with mean and variance
which vary with range and with the chosen value of ($.

For each range cell under test the probability of cross-
ing the first threshold (i.e. the probability of false alarm)
can now be calculated. The clutter return in the cell
under test is assumed to have a Rayleigh distribution of
known mean level and the probability of returns from
this cell exceeding the threshold can be calculated ana-
lytically. It is necessary for ease of analysis that the dis-
tributions of the threshold and the cell under test are
independent. This is achieved by leaving a gap between
the cell under test and the nearest range samples used in
the cell-averaging CFAR filter, to allow for the over-
sampling in range of the data which occurs in practice.

For each range cell the probability of integrated
returns exceeding the binary integrator second threshold
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can also be calculated, assuming that independent
samples of the threshold and cell return are obtained
from one pulse to the next through the use of frequency
agility.

The analysis is repeated for successive range cells pro-
viding values of Pfa at the first and second thresholds as
a function of range for each value of /?. The overall values
of Pfa for each value of /? are then obtained by averaging
in range and over all the profiles used.

3.3.2 Calculation of probability of detection Pd: A
similar procedure can be followed to estimate the prob-
ability of detection in each range cell. In this case,
however, the cell under test is assumed to contain a
target. In general, any target model can be used provid-
ing it is possible to generate the amplitude distribution of
target and clutter combined. For the present investiga-
tion the initial emphasis has been on a nonfluctuating
target which gives a Ricean distribution for the envelope
of the returns. The target amplitude is chosen to give the
required signal-to-clutter ratio when averaged over the
complete range profile. For any particular range cell the
amplitude distribution is then Ricean with parameters
determined by the local signal-to-clutter ratio.

The Pd for each range cell can then be calculated for
the required average signal-to-clutter ratios and with /?
set to give the required overall Pfa. The overall Pd is then
obtained by averaging over all ranges and profiles used.

3.3.3 Performance results: As an example of the effec-
tiveness of this technique, a number of results are shown
here using the data illustrated in Fig. 4a. The detection is
assumed to be a cell-averaging CFAR followed by a
binary integrator with a 6/10 second threshold [4]. The
probability of false alarm Pfa and probability of detec-
tion Pd are investigated as a function of /? for a nonfading
target.

Fig. 6 shows the expected Pfa in each range cell as a
function of range for four different cell-averaging CFAR
designs. Also shown is the mean level range profile used
to obtain the results (the actual range interval used was
longer, to allow for the settling time of the cell-averaging
CFAR filters). A fixed value of /? of 9 dB was used in each
case.

The cell-averaging CFAR designs illustrated are for
single- and double-sided averaging with either 10 or 50
samples averaged in total. The cell under test is assumed
to be separated from the nearest of the cells used for
averaging by one range sample up and down range.

It can be seen that the variation in Pfa with range is
quite different for the different designs. The single-sided
filter of length 50 range samples gives particularly large
variations and the most uniform result is obtained with
the double-sided filter of length 10 samples. These results
are reflected in the values of /? required to give particular
values of overall Pfa when averaged over all range
samples, as shown in Fig. 7.

The double-sided filters clearly perform better than the
single-sided ones for this particular clutter. The 2 dB to
3 dB difference in the values of fi required is directly
reflected in the detection performance against a non-
fading target, as shown in Fig. 8 for a Pfa of 10 ~4. Also
shown in Fig. 8 are the ideal detection curves calculated
using the methods of Section 2 for a K-distribution with
shape parameter v of value 1.5. It can be seen that the
cell-averaging CFAR curves follow the same trend as the
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'ideal CFAR' detection, but with a CFAR loss which is
about 4 dB for the double-sided filters and 7 dB for the
single-sided filters.
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Fig. 6 Probability of false alarm as function of range for a number of
cell-averaging CFAR configurations for the clutter illustrated in Fig. 4a
a Cell-averaging length = 50; single-sided
b Cell-averaging length = 50; double-sided
c Cell-averaging length = 10; single-sided
d Cell-averaging length = 10; double-sided
e Range profile of mean clutter envelope

As a check of the method, direct simulation using raw
(i.e. not averaged from pulse to pulse) clutter data from
the same recordings was undertaken using artificially
introduced nonfading targets. These results are also
shown in Fig. 8 and are in good agreement with the semi-
analytical results.

Exact equality of results is not expected due to the
finite sample size used and also because targets were not
simulated at all possible ranges in the raw clutter to save
computer time. However, similar agreement between
direct simulation and the analysis method was found
over a variety of different clutter recordings which were
also investigated, confirming not only the utility of the-
method but also the validity of the compound K-
distribution model.

Finally, Fig. 9 shows the equivalent detection curves
for the data illustrated in Fig. 4b. Here the spatial varia-
tion of the clutter is quite different and this is reflected in

the relative performance of the different cell-averaging
CFAR systems. It can be seen that the best performance
is now achieved by the longer double-sided filter, as
would be expected in noise or Rayleigh distributed
clutter. The theoretical detection curves for v with a value

10'1 r

single-sided

7 8 9 10 11 12
threshold multiplier j9, dB

13

Fig. 7 Average probability of false alarm as function of threshold
multiplier /? for the clutter illustrated in Fig. 4a, for single- and double-
sided cell-averaging CFAR systems followed by binary integrator with
6/10 second threshold

cell-averaging CFAR length 50; cell-averaging CFAR length 10

50

ideat CFAR
threshold

double-sided

single-sided
/ ' O CFAR

ideal
fixed threshold

0 2 A 6 8 10 12 K
signal-to-clutter ratio,dB

Fig. 8 Detection curves for nonfading target in the clutter illustrated
in Fig. 4a for single- and double-sided cell-averaging CFAR systems fol-
lowed by binary integrator with 6/10 second threshold and PJa = 70 ~4

Results obtained by combined analysis and simulation: cell-averaging
CFAR length 10; cell-averaging CFAR length 50
Results obtained by simulation using 'raw' clutter: + double-sided CFAR length
10; O single-sided CFAR length 50
Theoretical results: ideal thresholds for v = 1.5
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of 10 are also shown. The CFAR loss for the best per-
forming cell-averaging CFAR is about 1.5 dB.
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Fig. 9 Detection curves for nonfading target in the clutter illustrated
in Fig. 4b for single- and double-sided cell-averaging CFAR systems fol-
lowed by binary integrator with 6/10 second threshold and Pfa = 10~*

Results obtained by combined analysis and simulation: , cell-averaging
CFAR length 10; , cell-averaging CFAR length 50
Theoretical results: , ideal thresholds for v = 10

4 Future developments

The discussion in this paper has concentrated on the pro-
cessing of envelope detected returns and this will con-
tinue to be an important mode of operation for
high-resolution maritime surveillance radars. As has been
demonstrated, clutter conditions can vary widely and are
dependent on the radar parameters and on both the local
wind and sea conditions.

An important aspect of future radars is likely to be
their ability to adapt rapidly to provide the detection
signal processing which is best matched to the local con-
ditions. This may involve direct measurement of these
conditions or indirect indications, such as the value of the
threshold multiplier ft required for a cell-averaging
CFAR detector. When the clutter exhibits high spatial
periodicity, one approach might be to adopt predictive
techniques to improve the threshold setting. An example
of this type of scheme applied to sea clutter is given in
Reference 17, which describes the use of a lattice filtering
technique.

The choice of the best signal-processing scheme should
not be limited to a simple consideration of the expected
value of probability of detection. It has been shown in
this paper how the spatial distribution of false alarms
may vary, dependent on the signal-processing scheme.
Similar consideration must be given to the variation of
probability of detection. For example, a fixed threshold
may only detect a marginal target in regions of high
clutter if the false-alarm rate is set at a low value, whilst a
threshold which adapts to the local clutter level may
provide its best detection in regions of low clutter for the
same average false-alarm rate. The apparent target fading
characteristics for these two detectors may be very differ-
ent. However, the rather simplistic argument given here
has so far ignored the characteristics of the target itself.
Just as the improved understanding of clutter is provid-
ing considerable insight into the behaviour of signal-
processing methods, so a similar understanding and
modelling of targets will be essential to provide the

optimum detection techniques. Targets close to the sea
surface will be influenced by such phenomena as multi-
path interference and shadowing by the sea waves. In
some circumstances the return from the target may be
actually dominated by the return from its wake or by
wave splashing. In these conditions the target returns
may appear to be correlated spatially and temporally
with those of the clutter with obvious implications for
any detection process.

The processing of only the envelope of returns from
targets and clutter inevitably loses some of the informa-
tion in the radar signal. Current research is investigating
the spectra of coherent high-resolution clutter returns
together with their full polarisation scattering matrix [1].

The spectra of clutter returns often have a spread
which includes typical Doppler returns from surface
targets. To make matters worse, it has been observed that
the higher frequency components of the clutter spectra,
which may coincide with typical target Doppler shifts,
also have the 'spikiest' amplitude distributions. On the
other hand, the spectra may also be rather asymmetric,
resulting in some surface targets being detectable rela-
tively free of clutter. The use of polarisation diversity is
also likely to be important for the detection of marginal
targets and clearly the characterisation of targets as well
as clutter will be essential.

The discussion and results so far have implicitly been
concentrated on the detection of small targets on the sea
surface. Many targets will be range extensive relative to
the range resolution of the radar and this involves further
considerations of the appropriate detection techniques. A
discussion of strategies for range extensive targets in
uniform clutter can be found in Reference 18 and argu-
ments of this sort can be extended to high-resolution sea
clutter. With the advent of coherent radars for maritime
surveillance it is likely that synthetic aperture radar
(SAR) and inverse synthetic aperture radar (ISAR) tech-
niques [19] will be increasingly used. SAR techniques can
provide a high-resolution image of a ship. Significantly,
the ship's wake is often very clearly imaged [20] and this
may often be a more obviously detected signature than
the ship itself.

ISAR methods are also becoming increasingly impor-
tant and provide the opportunity for images of ships
which closely resemble their optical profiles [19, 21].

5 Conclusions

This paper has shown how the recent advances in sea
clutter modelling can be exploited in two ways: (a) to
improve the understanding of the clutter environment in
which a high-resolution maritime surveillance radar must
operate and (b) to develop detection signal-processing
techniques to meet the wide range of conditions encoun-
tered.

The maritime surveillance radars of the future are
likely to be highly adaptive and able to employ a wide
range of processing techniques to best fit the clutter and
target characteristics that are encountered.
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7 Appendix: Performance of a cell-averaging
detector in real clutter

7.1 Basic definitions and assumptions
The signal processing architecture being analysed is
shown in Fig. 5.

The data input to this analysis is assumed to be suc-
cessive samples in range of the mean clutter envelope (i.e.
a mean level range profile). These values are given by y{,
where i = 1,2,..., denotes successive samples in range. It
should be noted that, for analytical convenience, y is
taken as representing the average of the clutter envelope
and not the clutter power as shown in eqn. 2 of the
paper.

It is assumed that individual radar returns from a par-
ticular range cell will be Rayleigh distributed about their
mean level yt. The use of frequency agility is assumed to
provide independent Rayleigh samples from pulse to
pulse.

The running average is performed over N samples.
The analysis here assumes a single-sided cell-averaging
CFAR but can be easily extended to the double-sided
case.

Finally it is assumed that the threshold has a Gauss-
ian amplitude distribution with mean and variance calcu-
lated from the input data and appropriate filter
parameters.

7.2 Clutter amplitude distributions
The overall clutter distribution is assumed to be given by

(11)P(x)= p{y)p{x\y)dy
Jo

where p(y) is the distribution of the mean clutter level y,
and p(x\y) is the distribution of clutter about a given
mean level y. It is assumed that p(x \ y) is Rayleigh distrib-
uted so that

nx ~nx 0 ^ x ^ oo (12)

Given a threshold value t, the probability of false alarm
for this distribution is given by

-Tit'

~4yT (13)

7.3 Threshold mean and variance
Successive values of the cell-averaging CFAR filter
output are given by the weighted sum of N partially cor-
related Rayleigh variates. Given the mean clutter range
profile yt it is possible to obtain estimates of the mean
and variance of the output at each position in range.

In general, successive values of the mean of the output
are given by

(14)

where ait i = 1, . . . , N are the filter weights. For simpli-
city we shall consider a single output rm, where we arbi-
trarily set

N

j = 0 and S a, = 1
i = l

so that now

(15)

The threshold mean level is now simply obtained by
multiplying by /? so that

N

i^PHaiyi (16)
i = l

The threshold variance is found by considering the
variance of the weighted sum of N partially correlated
Rayleigh variates.

If we take N variates xt, i = 1,. . . , N, with mean x,- =
a, y{ and variance

var (x.) = afaf = afyfi - - 1
\n

where af is the variance of a Rayleigh variate with mean
y(, then the variance of the filter output can be written as

N \ N N-l N-j

I x,) = I var (x.) + 2 £ £ cov (x,x,.+,.) (17)
i = l / i = l j=\ i = l

Now the covariance terms can be expressed as

cov (XiXj) = £{(x£ - Xi)(Xj - Xj)}

= PijOi°j (18)

where pi} is the correlation coefficient for x, and Xj. It is
assumed here that the appropriate correlation coefficient
is determined by the radar pulse length and the sampling
interval and that it is independent of the actual values of
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x,- and Xj. We can then write

i+k (19)

For the data considered here the sampling interval is
approximately half the pulse length so that it should be
sufficient to use only the first two lags of the correlation
coefficient, pi and p2. We can then write

/ N \ N 2 N-j

var I X x,j = £ a? a? + 2 £ pj £ aiai^iaiai^i (20)

The variance of the filter output can now be expressed in
terms of the mean levels of the input signals as

(21)

(22)

2 N-j

7 = 1

The threshold variance is now given by

var (t) = a? = 0 2 var (rm)

The probability distribution p(t) of the threshold is
assumed to be Gaussian so that

P(t) =
1

2nat
exp - 2a?

(23)

7.4 Pfg at the first threshold
The probability of false alarm is now calculated for each
filter position over the range profile, assuming a Gauss-
ian threshold.

Using eqns. 13 and 23 we can write, for any one filter
position,

Jo

f* 1 exp
:, at) dt

-7t t ' \ 1
Ay2

2nat

(24)

The integration of the Gaussian distribution for t < 0 can
be ignored for t > at which is normally the case. Indeed,
the approximation will only be reasonable under these
circumstances since t will never be negative in practice.
Putting

a = l
a? n

gives

J
2n<,;XP\^(l-1

( 2 5 )

Provided t/ct > aj^/cc the integral can be performed over
the limits — oo to oo without loss of accuracy giving

= - r exp < - 2a?
(26)

The value of Pfa is calculated for each cell averager posi-
tion over the range profile and then averaged to give the
overall value of Pfa for that profile. As discussed earlier,
Pfa is clearly also now available as a function of range
along the profile.

It should also be noted that implicit in this analysis is
the assumption that the threshold value t is not corre-
lated with the Rayleigh component of the cell under test.

7.5 Pfg at the second threshold
The probability of false alarm at the second threshold
(after the binary integrator) can be easily calculated from
the value obtained at the first threshold for each filter
position along the profile (see Reference 4 for further dis-
cussion on binary integration). It is assumed that the
Rayleigh components of the clutter samples are indepen-
dent from pulse to pulse either from the use of frequency
agility or temporal decorrelation.
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